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Abstract

We study random subgraphs of an arbitrary finite connected transitive graph G obtained
by independently deleting edges with probability 1−p. Let V be the number of vertices in G,
and let Ω be their degree. We define the critical threshold pc = pc(G, λ) to be the value of p
for which the expected cluster size of a fixed vertex attains the value λV 1/3, where λ is fixed
and positive. We show that for any such model, there is a phase transition at pc analogous
to the phase transition for the random graph, provided that a quantity called the triangle
diagram is sufficiently small at the threshold pc. In particular, we show that the largest
cluster inside a scaling window of size |p−pc| = Θ(Ω−1V −1/3) is of size Θ(V 2/3), while below
this scaling window, it is much smaller, of order O(ε−2 log(V ε3)), with ε = Ω(pc−p). We also
obtain an upper bound O(Ω(p− pc)V ) for the expected size of the largest cluster above the
window. In addition, we define and analyze the percolation probability above the window
and show that it is of order Θ(Ω(p− pc)). Among the models for which the triangle diagram
is small enough to allow us to draw these conclusions are the random graph, the n-cube and
certain Hamming cubes, as well as the spread-out n-dimensional torus for n > 6.

1 Introduction and results

1.1 Background

Random subgraphs of finite graphs are of central interest in modern graph theory. The best known
example is the random graph G(V, p). It is defined as the subgraph of the complete graph on V
vertices obtained by deleting edges independently with probability 1 − p, and was first studied
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by Erdős and Rényi in 1960 [17]. They showed that when p is scaled as (1 + ε)V −1, there is a
phase transition at ε = 0 in the sense that the size of the largest component is Θ(log V ) for ε < 0,
Θ(V ) for ε > 0, and has the nontrivial behavior Θ(V 2/3) for ε = 0. Here, we use the notation
f(x) = Θ(g(x)), for f(x) ≥ 0 and g(x) ≥ 0, to denote the existence of a constant C such that
C−1g(x) ≤ f(x) ≤ Cg(x). Also, we write f(x) = O(g(x)) if f(x) ≤ Cg(x), f(x) = o(g(x)) if
f(x)/g(x) → 0, and f(x) = ω(g(x)) if f(x)/g(x) →∞.

The results of Erdős and Rényi were substantially strengthened by Bollobás [9] and ÃLuczak [30].
In particular, they showed that the model has a scaling window of width V −1/3 in the sense that
if p = (1 + ΛV V −1/3)V −1, then the size of the largest component is Θ(V 2/3) whenever ΛV remains
uniformly bounded in V , is o(V 2/3) whenever ΛV → −∞, and is ω(V 2/3) whenever ΛV →∞.

Considerably less is known for random subgraphs of other finite graphs. An interesting example
is the n-cube Qn, which has vertex set {0, 1}n and an edge joining any two vertices that differ
in exactly one component. Let V = 2n denote the number of vertices in Qn. It is known since
the work of Ajtai, Komlós and Szemerédi [5] that for p of the form p = (1 + ε)n−1, the largest
component is of size O(n) when ε is fixed and negative, and is of size at least c2n for some positive
c = c(ε) if ε is fixed and positive. However, very little is known about the scaling window. The
best results available are those of Bollobás, Kohayakawa and ÃLuczak in [10], who showed the
following. We use the standard terminology that a sequence of events En occurs asymptotically
almost surely (a.a.s.) if limn→∞ P(En) = 1. In [10], it is shown that that for p = (n− 1)−1(1 + ε)
the size of the largest cluster is at most O(nε−2) if ε < −e−o(n), is a.a.s. (2 log 2)nε−2(1 + o(1)) if
ε ≤ −(log n)2(log log n)−1n−1/2, and is a.a.s. 2ε2n(1 + o(1)) if ε ≥ 60n−1(log n)3. Note that the
resulting bounds, while much sharper than those established in [5], are still far from establishing
the behavior one would expect by analogy with the random graph, namely a window of width
Θ(V −1/3) where the largest cluster is of size Θ(V 2/3), with different behavior outside the window
on either side.

For random subgraphs of finite subsets of Zn, Borgs, Chayes, Kesten and Spencer [14] system-
atically developed a relationship between critical exponents and the width of the scaling window.
In particular, they determined the size of the largest component inside, below, and above a suit-
ably defined window, under certain scaling and hyperscaling hypotheses (proved in n = 2 and
conjectured to be valid whenever n ≤ 6). These results gave the appropriate version of the Erdős
and Rényi [17], Bollobás [9] and ÃLuczak [30] results for random subsets of Z2.

Very recently, steps have been taken to extend the Erdős and Rényi [17] analysis to more
general finite graphs. Frieze, Krivelevich and Martin [19] showed, in particular, that for random
subgraphs of pseudorandom graphs of V vertices, there is a phase transition in which the largest
component goes from Θ(log V ) to Θ(V ). Alon, Benjamini and Stacey [6] use the methods of [5] to
study the critical value for the emergence of the Θ(V ) component in random subgraphs of finite
regular expanding graphs of large girth. Note, however, that in the language of the discussion
above, both [19] and [6] consider only ε fixed; they do not get any results on the scaling window.

In this paper, we study conditions under which random subgraphs of arbitrary finite graphs
behave like the random graph G(V, p), both with respect to the critical point and the scaling
window. More precisely, let G be a finite connected transitive graph with V vertices of degree Ω.
Consider random subgraphs of G in which edges are deleted independently with probability 1− p.
We show that if a finite version of the so-called triangle diagram is sufficiently small at a suitably
defined transition point pc (see below), then the model behaves like the random graph in the sense
that inside a window of width |p− pc| = Θ(Ω−1V −1/3) the largest cluster is of order Θ(V 2/3) while
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it is of order o(V 2/3) below this window. These results are essentially optimal within and below
the scaling window. While we do obtain results much stronger than previous results above the
scaling window, our bounds in this region are still far from optimal. It is likely that a condition
beyond the triangle condition (e.g., an condition on the expansion of the graph) will be necessary
to achieve optimal results in this region above the window.

For percolation on infinite graphs, the triangle diagram has been recognized as an important
quantity since the work of Aizenman and Newman [4] who identified the so-called triangle condition
as a sufficient condition for mean-field behavior for percolation on Zn. Here, the term mean-field
behavior refers to the critical behavior of percolation on a tree, which is well understood. The
triangle condition is defined in terms of the triangle diagram

∇p(x, y) =
∑

u,v∈V
τp(x, u)τp(u, v)τp(v, y), (1.1)

where the sum goes over the vertices of the underlying graph, and τp(x, y) denotes the probability
that x and y are joined by a path of occupied edges (in the random subgraph language, τp(x, y)
is the probability that x and y lie in the same component of the random subgraph). On Zn,
the triangle condition is the statement that at the threshold pc, ∇pc(x, x) is finite. The triangle
condition was proved on Zn by Hara and Slade [23, 24], using the lace expansion, for the nearest-
neighbor model for n ≥ 19 and for a wide class of spread-out (long-range) models for all n > 6.

Let χ(p) denote the expected size of the cluster containing a fixed vertex. Aizenman and
Newman used a differential inequality for χ(p) to show that the triangle condition implies that
as p ↗ pc, the expected cluster size diverges like (pc − p)−γ with γ = 1. Subsequently, Barsky
and Aizenman [7] showed, in particular, that the triangle condition also implies that as p ↘ pc

the percolation probability goes to zero like (p − pc)
β with β = 1. Their proof is based on

differential inequalities for the magnetization. These inequalities, which were motivated by an
earlier inequality of Chayes and Chayes [15, 16], had been used previously by Aizenman and
Barsky to prove sharpness of the percolation phase transition on Zn [2]. The exponents γ and β
are examples of critical exponents. For percolation on a tree, the above behavior for the percolation
probability and the expected cluster size can be relatively easily established with γ = β = 1.

In order to apply the above methods to prove mean-field behavior for percolation on finite
graphs, several hurdles must be overcome. The first is the fact that it is a priori unclear how even
to define the critical value pc. Second, the triangle condition must be modified, since ∇p(x, y) is
always finite on a finite graph. Third, the method of integration of the differential inequalities of
[2, 4, 7] requires that at pc, the expected cluster size diverges, which is again not possible on a
finite graph G. All these facts, which we deal with below, require substantial modification and
generalizations of the methods and concepts of [2, 4, 7].

In addition to the methods involving differential inequalities, our results are based on a second
set of techniques, developed in [14], relating critical exponents and the width of the scaling window.
We will apply these methods here to obtain information on the size of the largest cluster from
information on the cluster-size distribution.

The results of this paper are valid assuming the triangle condition. For the complete graph
G(V, p), we will easily verify the triangle condition below, thereby reproducing some of the known
results for the phase transition in the random graph. In [12], we will use the lace expansion to
verify the triangle condition for several other examples of finite graphs, including the n-cube and
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various tori with vertex set {0, 1, . . . , r − 1}n. This leads to several new results for these models;
see Section 2.2 below.

1.2 The setting

Let G = (V,B) be a finite graph. The vertex set V is any finite set, and the set of bonds (or
edges) B is a subset of the set of all two-element subsets {x, y} ⊂ V. The degree of a vertex x ∈ V
is the number of bonds containing x. A bijective map ϕ : V → V is called a graph isomorphism
if {ϕ(x), ϕ(y)} ∈ B whenever {x, y} ∈ B, and G is called transitive if for every pair of vertices
x, y ∈ V there is a graph-isomorphism ϕ with ϕ(x) = y. Transitive graphs are by definition regular,
i.e., each vertex has the same degree.

Let G be an arbitrary finite, connected, transitive graph with V vertices of degree Ω. We
study percolation on G, in which each of the bonds is occupied with probability p independently of
the other bonds, and vacant otherwise. We denote probabilities and expectations in the resulting
product measure by Pp(·) and Ep(·), respectively.

As usual, we say that x is connected to y, written as x ↔ y, when there is a path from x to y
consisting of occupied bonds. We define the connectivity function τp(x, y) by

τp(x, y) = Pp(x ↔ y). (1.2)

We denote by C(x) the cluster of a vertex x, that is, the set of all vertices in G which are connected
to x, and by |C(x)| the number of vertices in this cluster. Note that the distribution of |C(x)| is
invariant under the automorphisms of G, and hence independent of x. Instead of |C(x)|, we will
therefore often study |C(0)|, where 0, the “origin”, is an arbitrary fixed vertex in V.

Our main results involve the cluster size distribution,

P≥k(p) = Pp(|C(0)| ≥ k), (1.3)

the susceptibility
χ(p) = Ep|C(0)|, (1.4)

(i.e., the expected size of the cluster of a fixed vertex), and the size of a maximal cluster Cmax,
namely

|Cmax| = max{|C(x)| : x ∈ G}. (1.5)

By definition, the function χ is strictly monotone increasing on the interval [0, 1], with χ(0) = 1
and χ(1) = V . Also,

χ(p) = Ep

∑

x∈V
I[x ∈ C(0)] =

∑

x∈V
τp(0, x). (1.6)

Recall that for G(V, p) the largest cluster inside the transition window is of order V 2/3. It is not
difficult—in fact, easier—to determine the expected cluster size inside the window, which turns
out to be of order V 1/3. Motivated by this fact, we define the critical threshold pc = pc(G, λ) of a
finite graph G to be the unique solution to the equation

χ(pc) = λV 1/3, (1.7)

with λ > 0. There is some flexibility in the choice of λ, connected with the fact that the transition
takes place within a window and not at a particular value of p. A convenient choice is to take λ
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to be constant (independent of V ). We will always assume that 1 < λV 1/3 < V so that pc is well
defined and 0 < pc < 1.

The definition (1.7) is appropriate for graphs that obey mean-field behavior, which we expect
only for graphs that are in some sense “high-dimensional.” As we discuss in more detail in
Section 3.4.2, we expect that a different definition of the critical threshold would be appropriate
for a graph providing a finite approximation to Zn for n < 6 (with a lesser modification required
also when n = 6).

1.3 Main results

In this section, we state our main results, which hold for arbitrary finite connected transitive
graphs, provided the triangle diagram (1.1) at pc is sufficiently small. To be more precise, we will
assume that

∇pc(x, y) ≤ δx,y + a0 (1.8)

for a sufficiently small constant a0, a condition we call the finite-graph triangle condition, or
more briefly, the triangle condition. Although we have not done the necessary computations, the
constant a0 need not be extremely small, and we expect our results to hold for a0 of the order of
1
10

.
By (1.6),

∑
y∈V∇p(x, y) = χ(p)3. As a consequence, the triangle condition implies that

λ3 ≤ a0 + V −1. (1.9)

In particular, it is necessary that λ be chosen to be small in order for the triangle condition to
hold. It turns out that choosing λ small is also sufficient to imply the triangle condition for many
graphs G. For the random graph, this is shown in Section 2.1, and for several other models in [12];
see Section 2.2. Indeed, we will show that for these models,

∇p(x, y) = δx,y + O(Ω−1) + O(χ3(p)/V ) (1.10)

whenever χ3(p)/V is small enough.
Our results concerning the critical threshold are given in the following theorem. In its state-

ment, we make the abbreviations

ε0 =
1

χ(pc)
= λ−1V −1/3, (1.11)

and
∇̄p = max

{x,y}∈B
∇p(x, y). (1.12)

Theorem 1.1 (Critical threshold). For all finite connected transitive graphs G, the following
statements hold.
(i) If λ > 0 and the triangle condition (1.8) holds for some a0 < 1, then

1− ε0 ≤ Ωpc ≤ 1− ε0

1− a0

. (1.13)

(ii) Given 0 < λ1 < λ2 < ∞, let pi be defined by χ(pi) = λiV
1/3 (i = 1, 2). If ∇̄p2 < 1, then

λ2 − λ1

λ1λ2

1

V 1/3
≤ Ω(p2 − p1) ≤ 1

1− ∇̄p2

λ2 − λ1

λ1λ2

1

V 1/3
. (1.14)
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For example, if G is the complete graph on n vertices (so that V = n and Ω = n− 1), and if p2

is inside the transition window consisting of p with Ω|p− 1
Ω
| = Θ(V −1/3), then p1 remains within

the transition window for any constant λ1 < λ2.
Our results concerning the subcritical phase are given in the following theorem.

Theorem 1.2 (Subcritical phase). There is a (small) constant b0 > 0 such that the following
statements hold for all positive λ, all finite connected transitive graphs G and all p of the form
p = pc − Ω−1ε with ε ≥ 0.
(i) If the triangle condition (1.8) holds for some a0 < 1, then

1

ε0 + ε
≤ χ(p) ≤ 1

ε0 + [1− a0]ε
. (1.15)

(ii) If the triangle condition holds for some a0 ≤ b0, if b0 ≥ λ−1V −1/3, and for the lower bound of
(1.16) if V is larger than some constant V0, then

10−4χ2(p) ≤ Ep

(
|Cmax|

)
≤ 2χ2(p) log(V/χ3(p)), (1.16)

Pp

(
|Cmax| ≤ 2χ2(p) log(V/χ3(p))

)
≥ 1−

√
e

[2 log(V/χ3(p))]3/2
, (1.17)

and, for ω ≥ 1,

Pp

(
|Cmax| ≥ χ2(p)

3600ω

)
≥

(
1 +

36χ3(p)

ωV

)−1

. (1.18)

Our next theorem states our results inside the scaling window.

Theorem 1.3 (Critical Window). Let λ > 0 and Λ < ∞. Then there are finite positive
constants b1, . . . , b8 such that the following statements hold for all finite connected transitive graphs
G provided the triangle-condition (1.8) holds for some constant a0 ≤ b0 and λV 1/3 ≥ b−1

0 , with b0

as in Theorem 1.2. Let p = pc + Ω−1ε with |ε| ≤ ΛV −1/3.
(i) If k ≤ b1V

2/3, then
b2√
k
≤ P≥k(p) ≤ b3√

k
. (1.19)

(ii)

b4V
2/3 ≤ Ep

(
|Cmax|

)
≤ b5V

2/3 (1.20)

and, if ω ≥ 1, then

Pp

(
ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3

)
≥ 1− b6

ω
. (1.21)

(iii)
b7V

1/3 ≤ χ(p) ≤ b8V
1/3. (1.22)

In the above statements, the constants b2 and b3 can be chosen independent of λ and Λ, the constants
b5 and b8 depend on Λ and not λ, and the constants b1, b4, b6 and b7 depend on both λ and Λ.

Our results on the supercritical phase are given in the following theorem.
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Theorem 1.4 (Supercritical phase). Let λ > 0. The following statements hold for all finite
connected transitive graphs G provided the triangle-condition (1.8) holds for some constant a0 ≤ b0

and λV 1/3 ≥ b−1
0 , with b0 as in Theorem 1.2. Let p = pc + εΩ−1 with ε ≥ 0.

(i)

Ep

(
|Cmax|

)
≤ 21εV + 7V 2/3, (1.23)

and, for all ω > 0,

Pp

(
|Cmax| ≥ ω(V 2/3 + εV )

)
≤ 21

ω
. (1.24)

(ii) If 0 ≤ ε ≤ 1 then
χ(p) ≤ 81(V 1/3 + 81ε2V ). (1.25)

Note that Theorem 1.4 does not give lower bounds on the size of the largest supercritical cluster.
We believe that this is not a mere technicality. Indeed, the formation of a giant component in
the random graph is closely related to the fact that moderately large clusters have a significant
chance to merge into a single, giant component as ε is increased beyond zero by an amount of order
V −1/3. This fact involves the geometry of the random graph, and may not be true for arbitrary
transitive graphs obeying the triangle condition. It would be interesting to know whether there
exists a sequence of transitive graphs Gn such that the largest cluster above the window is o(εV ),
at least if εV −1/3 → ∞ sufficiently slowly. On the other hand, as we explain in more detail in
Section 2.2 below, our results apply to the n-cube Qn, and for Qn we prove complementary lower
bounds to the upper bounds of Theorem 1.4 in [13]. Our proof of these upper bounds is valid for

ε ≥ e−cn1/3
, and not in the full domain ε À V −1/3 = 2−n/3 where we would conjecture that they

are valid. The methods of [13] rely heavily on the specific geometry of Qn and do not apply at the
level of generality of Theorem 1.4.

We close this section with a theorem that gives a more precise bound on the susceptibility
below the window, under the assumption that the stronger triangle condition (1.10) holds. We
make the constants in (1.10) explicit by assuming that

∇p(x, y) ≤ δx,y + K1Ω
−1 + K2

χ3(p)

V
(1.26)

for some constants K1, K2 < ∞ and all p ≤ pc. Let

a = K1Ω
−1 + K2λ

3, (1.27)

K̃2 = K2/(1− a), (1.28)

ã(ε) = K1Ω
−1 + K2λ

3 ε0

ε0 + (1− a)ε
. (1.29)

Theorem 1.5 (Sharpened bounds). Let λ > 0 and let G be a finite connected transitive graph
such that (1.26) holds for all p ≤ pc, with the constant in (1.27) obeying a < 1. Let p = pc −Ω−1ε
with ε ≥ 0, and let K̃2 and ã(ε) be given by (1.28)–(1.29). Then

1− ε0 ≤ Ωpc ≤ 1− ε0

1−K1Ω−1 − K̃2λ3ε0

, (1.30)

1

ε0 + ε
≤ χ(p) ≤ 1

ε0 + [1− ã(ε)]ε
. (1.31)
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The inequality (1.30) implies that |Ωpc − 1| = O(Ω−1 + λ−1V −1/3) (assuming λ ≤ 1). The
significance of (1.31) is most apparent if we consider a sequence of graphs with λ > 0 fixed,
V →∞ and Ω →∞, for ε such that ε/ε0 →∞. In this limit, (1.31) implies that

χ(p) =
1

ε
[1 + o(1)]. (1.32)

We will apply Theorem 1.5 to the random graph in Section 2.1.

1.4 General sequences of finite graphs

To illustrate our theorems, it is instructive to consider a sequence of finite connected transitive
graphs Gn = (Vn,Bn) with |Vn| → ∞. We will say that such a sequence obeys the finite-graph
triangle condition if there exist a λ > 0 such that the condition (1.8) holds for all n, with a constant
a0 that is at most as large as the constant b0 in Theorem 1.2.

Consider thus a sequence of finite connected transitive graphs Gn satisfying the finite-graph
triangle condition. Consider also a sequence of probabilities of the form

pn = pc + Ω−1εn. (1.33)

Motivated by the random graph (and our theorems) we say that the sequence pn is inside the
window, if lim supn→∞ |εnV 1/3

n | < ∞, below the window if εnV 1/3
n → −∞, and above the window if

εnV 1/3
n →∞ as n →∞. In order to avoid dealing with higher order corrections in εn, we assume

here that εn → 0.
Consider first a sequence below the window, i.e., assume that εnV 1/3

n → −∞ as n → ∞. The
first statement of Theorem 1.2 then implies that

χ(pn) = Θ(ε−γ
n ) (1.34)

with γ = 1, while the second implies that

Θ(ε−2
n ) ≤ Ep

(
|Cmax|

)
≤ Θ(ε−2

n log |εnV
1/3
n |), (1.35)

and
Θ(ε−2

n ) ≤ |Cmax| ≤ Θ(ε−2
n log |εnV 1/3

n |) a.a.s. as n →∞. (1.36)

Note that this implies, in particular, that below the window, |Cmax| = o(V 2/3
n ) a.a.s. as n →∞.

Next, consider a sequence pn inside the window, i.e., a sequence of the form (1.33) with
lim sup |εnV 1/3

n | < ∞. Theorem 1.3 then implies that

χ(pn) = Θ(V 1/3
n ), (1.37)

Ep

(
|Cmax|

)
= Θ(V 2/3

n ), (1.38)

with the probability of the event

ω(n)−1 ≤ |Cmax|
Ep

(
|Cmax|

) ≤ ω(n) (1.39)

going to one whenever ω(n) →∞ as n →∞.
Let us finally consider a sequence pn above the window, i.e., a sequence of the form (1.33) with

εnV 1/3
n →∞. Theorem 1.4(i) then implies that the expected size of the largest cluster is O(εnVn),

and Theorem 1.4(ii) shows that χ(pn) = O(ε2
nVn).
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1.5 The percolation probability and magnetization

It is a major result for percolation on Zn that the value of p for which χ(p) becomes infinite is
the same as the value of p where the percolation probability, or order parameter, Pp(|C(0)| = ∞),
becomes positive [2, 31]. In the present setting, since the graph is finite, there can be no infinite
cluster and the definition of the order parameter needs to be adapted. A natural definition of the
finite-size order parameter is the ratio of the expected maximal cluster size to the volume V :

θ(p) =
Ep

(
|Cmax|

)

V
. (1.40)

However, we are unable to prove a good lower bound on (1.40) in the supercritical regime,
and we therefore consider an alternative definition in terms of the cluster size distribution P≥k(p).
Parameterizing p as p = pc + εΩ−1, we define the percolation probability by

θα(p) = Pp(|C(x)| ≥ Nα) = P≥Nα(p), (1.41)

where

Nα =
1

ε2

(
εV 1/3

)α
. (1.42)

Here α is a constant with 0 < α < 1. This definition is motivated by the known behavior of
the random graph. Above the window (corresponding to εV 1/3 →∞), it is known that a.a.s., the
largest component has size |Cmax| = 2εV [1+o(1)], while the second largest has size 2ε−2 log(ε3V )[1+
o(1)]. For the random graph above the window, the cutoff Nα in (1.41) is therefore much larger
than the second largest, and much smaller than the largest cluster. Thus we regard θα(p) as an
appropriate substitute for θ(p). (The above reasoning actually suggests the wider range 0 < α < 3
for α, but for technical reasons we require 0 < α < 1.) Our results for θα(p) are stated in the
following theorem.

Theorem 1.6 (The percolation probability). Let λ > 0 and 0 < α < 1. Then there are finite
positive constants b9, b10, b11, b12 such that the following statements hold for all finite connected
transitive graphs G provided the triangle-condition (1.8) holds for some constant a0 ≤ b0 and
λV 1/3 ≥ b−1

0 , with b0 as in Theorem 1.2. Let p = pc + εΩ−1.

(i)
b10ε ≤ θα(p) ≤ 27ε, (1.43)

where the lower bound holds when b9V
−1/3 ≤ ε ≤ 1 and the upper bound holds when εV 1/3 ≥ 1.

(ii) If max{b12V
−1/3, V −η} ≤ ε ≤ 1, where η = 1

3
3−2α
5−2α

, then

Pp

(
|Cmax| ≤ [1 + (εV η)−1]θα(p)V

)
≥ 1− b11

(εV η)3−2α
. (1.44)

In the above statements, the constants b9, b10, b11 and b12 depend on both α and λ.

Theorem 1.6(i) is analogous to results proved for percolation on Zn (assuming high n for the
upper bound) in [2, 7, 23]. Theorem 1.6(ii) shows that it is unlikely that the largest supercritical
cluster is larger than θα(p)V , at least for ε not too small. As we will describe in more detail in
Section 2.2 below, it is shown in [13] that when G is the n-cube, it is possible also to prove a lower
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bound on |Cmax|, so that |Cmax| is of the same order of magnitude as θα(p)V , at least when ε is
not too small. The fact that θα(p) can be used in this way serves as further justification for the
definition (1.41). In [14], a similar approach was used for Zn in low dimensions.

Our analysis of θα(p), and more generally our analysis of the cluster size distribution P≥k(p), is
primarily based on an analysis of the magnetization. Let Pk(p) be the probability that |C(0)| = k.
The magnetization M(p, γ) is defined by

M(p, γ) = 1−
V∑

k=1

(1− γ)kPk(p). (1.45)

Thus M(p, γ) is essentially the generating function for the sequence Pk(p), and M(p, 0) = 0 for all
p. Estimates on M(p, γ) for small γ can be converted into estimates on Pk(p) for large k, via an
analysis reminiscent of a Tauberian theorem. The name “magnetization” is used because M(p, γ)
is analogous the magnetization in spin systems, and the variable h ≥ 0 defined by γ = 1 − e−h

plays the role of an external magnetic field in that context. Our main results for the magnetization
are summarized in the following theorem.

Theorem 1.7 (The magnetization). Assume that a0 is sufficiently small, and let 0 ≤ γ ≤ 1.
(i) If p ≤ pc then

1

3
min{√γ, γχ(p)} ≤ M(p, γ) ≤ min{

√
12γ, γχ(p)}. (1.46)

(ii) If p = pc + Ω−1ε and ε ≥ 0 then

M(p, γ) ≤
√

12γ + 13ε. (1.47)

Let 0 ≤ α < 1 and ρ > 0. There is a positive c = c(α, λ) and b13 = b13(α, λ, ρ) such that if
b13V

−1/3 ≤ ε ≤ 1 then
M(p, ρN−1

α ) ≥ cε min{1, ρ1/(2−α)}. (1.48)

1.6 Guide to the paper

In Section 2, we discuss several examples where our general results can be applied. In Section 3,
we indicate some of the main ideas that enter into the proofs of our main results.

The following table indicates where the various theorems are proved. The notation [u.b.] refers
to the upper bounds on |Cmax| and [l.b.] to the lower bounds.

Theorem 1.1 1.2 (i), (ii) [u.b] 1.2 (ii) [l.b] 1.3 (i) 1.3 (ii-iii) 1.4 (i)

Section 4 4 7 6 3 6

Theorem 1.4 (ii) 1.5 1.6 (i) 1.6 (ii) 1.7

Section 8 4 6 9 5

There is no dependence on Section 4 in Sections 5–9. The bounds on the magnetization proved
in Section 5 are crucial for Sections 6–9. Section 7 depends on Section 6, which in turn depends
on Section 5. Sections 8 and 9 each depend on Section 5 and on no other section. Sections 7, 8
and 9 are mutually independent. Three differential inequalities, needed in Sections 4, 5, and 8, are
proved in Appendix A.
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2 Examples

2.1 The random graph

In this section, we illustrate both the finite-graph triangle condition and our results when G is
the random graph on n vertices. In the notation of the last section, we thus consider the graph
G = Kn, the complete graph on n vertices, with V = n vertices of degree Ω = n− 1.

2.1.1 The triangle condition for the random graph

For the random graph, the triangle diagram can be explicitly and easily calculated in terms of the
expected cluster size χ(p), as follows. Due to the high degree of symmetry of the complete graph,
the two-point function takes on only the two distinct values τp(x, x) = 1 and τp(x, y) = τ (say) for
x 6= y, so that τp(x, y) = δx,y + τ(1− δx,y). The triangle diagram (1.1) is therefore given by

∇p(x, y) =





1 + 3(n− 1)τ 2 + (n− 1)(n− 2)τ 3 if x = y,

3τ + 3(n− 2)τ 2 + [1 + (n− 1)(n− 2)]τ 3 if x 6= y.
(2.1)

Also, by (1.6), τ = (n− 1)−1(χ(p)− 1). Since χ(p) ≤ n, this implies that τ ≤ n−1χ(p). It is then
straightforward to see that

∇p(x, y) ≤ δx,y +
χ3(p)

n

[
1 + 3χ−1(p) + 3χ−2(p)

]
≤ δx,y + 7n−1χ3(p). (2.2)

Recalling that by definition,
χ(pc) = λn1/3, (2.3)

we have thus obtained the triangle condition (1.8) with a0 = 7λ3. In addition, (1.26) holds with
K1 = 0 and K2 = 7.

2.1.2 The phase transition for the random graph

Having verified the triangle condition, we can now apply the results of Section 1.3 provided we take
λ to be a sufficiently small constant. Starting with Theorem 1.5, since Ω = n−1 = n(1+O(n−1)),
(1.30) implies that

pc =
1

n
(1 + O(n−1/3)). (2.4)

While we cannot expect that pc = 1/n (in fact, (1.30) implies that pc < 1/n if λ is small enough),
it differs from the traditional value by only a small amount, small enough to keep it inside the
scaling window. Thus our definition of pc is quite sensible for the random graph.

In Theorems 1.2–1.5, we have used the parameter ε = Ω(p − pc). For the random graph,
we will use the scaling p = pc(1 + Λnn−1/3), which corresponds to ε = (n − 1)pcΛnn

−1/3. Then
ε = εn[1 + o(1)], where

εn = Λnn−1/3. (2.5)

Note that if Λn → −∞ then for K1 = 0 we have ã(ε) = Θ(|Λ−1
n |), and (1.31) implies the simpler

statement

χ(p) =
1

|εn|(1 + O(Λ−1
n )), (2.6)
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as claimed below in (2.7).
The conclusions of Theorems 1.2–1.6 for the random graph are summarized in the following

theorem.

Theorem 2.1. Let p = pn = pc(1 + Λnn−1/3) with pc = pc(n, λ) defined by (2.3). There exists a
constant λ0 such that the following statements are true for all fixed, strictly positive λ ≤ λ0, with
the constants implicit in our O(·) and Θ(·) possibly depending on λ.
(i) (Subcritical phase). If Λn → −∞ as n →∞ then

χ(p) =
n1/3

|Λn|(1 + O(Λ−1
n )), (2.7)

n2/3Θ(Λ−2
n ) ≤ Ep

(
|Cmax|

)
≤ 6n2/3 log |Λn|

Λ2
n

(1 + O(Λ−1
n )), (2.8)

with

n2/3Θ(Λ−2
n ) ≤ |Cmax| ≤ 6n2/3 log |Λn|

Λ2
n

(1 + O(Λ−1
n )) a.a.s. as n →∞. (2.9)

(ii) (Critical window). If Λ = lim sup |Λn| < ∞ as n →∞ then

χ(p) = Θ(n1/3), Ep

(
|Cmax|

)
= Θ(n2/3), (2.10)

with

ω(n)−1 ≤ |Cmax|
Ep

(
|Cmax|

) ≤ ω(n) a.a.s. as n →∞ (2.11)

whenever ω(n) →∞ as n →∞. If kn−2/3 is small enough (depending on Λ), then

P≥k(p) = Θ(k−1/2). (2.12)

(iii) (Supercritical phase). Let 0 < α < 1. If Λn →∞ as n →∞ and εn = Λnn
−1/3 → 0 then

χ(p) = O(n1/3Λ2
n), Ep

(
|Cmax|

)
= O(εnn), (2.13)

and
θα(p) = Θ(εn). (2.14)

If Λn →∞ at least as fast as n
1
3
−η = n

2
3(5−2α) , then

Pp

(
|Cmax| ≤

(
1 +

1

εnη

)
θα(p)n

)
≥ 1−O

(
1

(εnη)3−2α

)
. (2.15)

It is interesting to compare Theorem 2.1 with previously known results for the phase transition
in the random graph. Since pc = n−1 + O(n−4/3), if we change our parametrization to p =
n−1 + Λn−4/3 then we effectively change Λ by a constant. This affects the constants in the critical
window and has an asymptotically negligible effect in the subcritical and supercritical phases.
This new parametrization is the standard parametrization used (with λ instead of Λ) in much of
the random graph literature. We refer to the book of Janson, ÃLuczak and Rucinski [29], where
references to the original literature can be found. Results in [29] are expressed in terms of the
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variable s, where n
2

+ s gives the number of occupied edges, and our formulas can be compared to
theirs by setting s = Λ

2
n2/3.

In the subcritical phase, we show that the largest component has size between c1n
2/3Λ−2 and

c2n
2/3Λ−2 log |Λ|, while [29, Theorem 5.6] gives, in particular, that the largest component is asymp-

totically of size 6n2/3Λ−2 log |Λ|. The constant 6 in the upper bounds in (2.8)–(2.9) is therefore
sharp.

In the critical window, we show that the largest component has size Θ(n2/3), while [29, Theo-
rem 5.20] gives, in particular, that the largest component has size X ′

1n
2/3 where X ′

1 is a random
variable with a nontrivial distribution on (0,∞).

In the supercritical phase, let ε = Λn−1/3, so that p = 1
n
(1 + ε). We show that the largest

component has size O(εn). As mentioned below the statement of Theorem 1.4, we have no lower
bound on the largest subcritical cluster in our general setting. In [29, Theorem 5.12], the largest
component is shown asymptotically to have size 2εn (their s is asymptotic to s when ε → 0).
Moreover, [29, Theorem 5.7] yields that the rth largest component (for any fixed r ≥ 2) has size
asymptotic to 6n2/3Λ−2 log Λ. We are unable to get any reasonable upper bounds on the size of
the second largest component.

Although our results are not state-of-the-art for the random graph, it is nevertheless striking
that they follow from a general theory that makes no calculation specific to the random graph
apart from the simple verification of the finite-graph triangle condition in Section 2.1.1. More
importantly, our theorems apply much more generally, to models such as the n-cube and finite tori
in Zn for n > 6, where they imply strong new results.

2.2 The n-cube and several tori

In [12], we use the lace expansion to prove quite generally that for finite graphs that are tori the
triangle condition for percolation is implied by a certain triangle condition for simple random walk
on the graph. As we show in [12], the latter is easily verified for the following graphs with vertex
set {0, 1, . . . , r − 1}n:

1. The nearest-neighbor torus: an edge joins vertices that differ by 1 (modulo r) in exactly
one component. For r = 2, this is the n-cube. For n fixed and r large, this is a periodic
approximation to Zn. Our results apply in the limit in which V = rn →∞, in any fashion,
provided that n ≥ 7 and r ≥ 2.

2. The Hamming torus: an edge joins vertices that differ in exactly one component (modulo r).
For r = 2, this is again the n-cube. Our results apply in the limit in which V = rn →∞, in
any fashion, provided that n ≥ 1 and r ≥ 2.

3. The spread-out torus: an edge joins vertices x = (x1, . . . , xn) and y = (y1, . . . , yn) if 0 <
maxi=1,...,n |xi − yi| ≤ L (with | · | the metric on Z modulo r). Our results apply in the limit
r → ∞, with n ≥ 7 fixed and L large (depending on n) and fixed. This gives a periodic
approximation to range-L percolation on Zn.

Our conclusions thus apply to the percolation phase transition for each of the above examples,
which are all high-dimensional graphs. We do not expect the triangle condition to hold for low-
dimensional graphs, and in particular do not expect the triangle condition to hold for the spread-
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out torus in dimensions n ≤ 6. Nor do we expect the conclusions of our theorems to hold in low
dimensions.

Combined with [12], our results show that the phase transition for percolation on the n-cube
Qn shares several features with the phase transition for the random graph. In particular, it follows
from the triangle condition for Qn proved in [12] and Theorem 1.5 that pc(Qn, λ) = n−1 + O(n−2),
for any sufficiently small choice of λ. In [27], it is shown that there is an asymptotic expansion for
pc(Qn, λ) to all orders of n−1, with rational coefficients, and in [28] it is shown that pc(Qn, λ) =
n−1 + n−2 + 7

2
n−3 + O(n−4). In addition, in [13] we use the lower bound on the percolation

probability of (1.43) to prove a lower bound on the largest supercritical cluster for the n-cube.
This leads to a substantial improvement of some of the results of [5, 10].

Our results for fixed n ≥ 7 and r →∞ show that in a window of width r−n/3 centered at the
critical value pc = pc(r, n) of the torus, the largest cluster has size Θ(r2n/3). It is interesting to
compare this with a previous result for Zn. For p = pc(Zn), consider the restriction of percolation
configurations to a large box of side r, under the bulk boundary condition in which the clusters in
the box are defined to be the intersection of the box with clusters in the infinite lattice (and thus
clusters in the box need not be connected within the box). How large is the largest cluster in the
box, as r →∞? The combined results of Aizenman [1] and Hara, van der Hofstad and Slade [22]
show that for spread-out models with n > 6 the largest cluster has size of order r4, and there are
order rn−6 clusters of this size. For the nearest-neighbor model in dimensions n À 6, the same
results follow from the combined results of [1] and Hara [21]. The size r4 for the largest critical
cluster size is different than the r2n/3 that we prove for p = pc(r, n) under the periodic boundary
condition of the torus. Aizenman [1] had raised the question whether a change from bulk to
periodic boundary conditions would change the r4 to r2n/3. It would be interesting to attempt to
extend our results, to show that pc(Zn) lies inside the critical window centered at pc(r, n) for large
r, thereby providing an affirmative answer to Aizenman’s question.

3 Overview of the proofs

3.1 Differential inequality for the susceptibility

The results for the critical threshold and the subcritical susceptibility, stated in Theorems 1.1,
1.2(i) and 1.5 are all derived from the differential inequality

[1− ∇̄p]Ω ≤ −dχ−1(p)

dp
≤ Ω, (3.1)

where χ−1 denotes the reciprocal of χ, and where ∇̄p is defined by (1.12). This differential in-
equality was proved by Aizenman and Newman [4] with infinite graphs in mind, but their proof
applies also to finite transitive graphs. We recall the proof of (3.1) in Appendix A.1. The triangle
condition is used to bound the left side of (3.1) from below. In Section 4.1, we will show that
integration of (3.1) leads directly to proofs of Theorems 1.1, 1.2(i) and 1.5.

3.2 Differential inequalities for the magnetization

Aizenman and Barsky [2] used differential inequalities for the magnetization to prove sharpness
of the phase transition for percolation on Zn. In [7], they derived a complementary differential
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inequality, assuming the triangle condition, which implied that on Zn the magnetization and
percolation probability behave asymptotically as M(pc, γ) = Θ(

√
γ) and Pp(|C(0)| = ∞) = Θ(p−

pc). In Section 5, we recall the statement of the differential inequalities of [2], and in Appendix A.2
we derive a variant of the complementary differential inequality of [7]. In Section 5, we show
how to integrate the differential inequalities to obtain the bounds on the magnetization stated in
Theorem 1.7. In performing the integration, care is required to deal with the finite size effects.

The bounds on the magnetization proved in Section 5 lie at the heart of our method, and play
a crucial role in all of Sections 6–9.

3.3 The cluster size distribution

The magnetization is a generating function for the sequence Pp(|C(0)| = k), and its behavior
for small γ is closely related to the behavior of P≥k(p) for large k. This is made precise in
Section 6, where Theorem 1.3(i) and related bounds on P≥k(p) are obtained from the bounds on
the magnetization proven in Section 5. The upper bounds on the magnetization easily lead to
upper bounds on the cluster size distribution for all p ∈ [0, 1]. The lower bounds are more difficult.
We will need matching upper and lower bounds on M(p, γ) to obtain good lower bounds on P≥k(p),
and, in the supercritical phase, our lower bounds on M(p, γ) are in the restricted form given in
(1.48), with γ proportional to N−1

α . Our bounds on P≥k(p) then lead to a proof of the bounds on
θα(p) = P≥Nα(p) stated in Theorem 1.6(i).

3.4 The scale of the largest cluster

3.4.1 The random variable Z≥k

Given k > 0, let
Z≥k =

∑

x∈V
I[|C(x)| ≥ k] (3.2)

denote the number of vertices that lie in clusters of size k or larger. Then

Ep(Z≥k) = V P≥k(p). (3.3)

By definition, |Cmax| ≥ k if and only if Z≥k ≥ k, and hence, by the Markov inequality,

Pp

(
|Cmax| ≥ k

)
≤ V P≥k(p)

k
(3.4)

and
Ep

(
|Cmax|

)
≤ k + Ep

(
Z≥k

)
= k + V P≥k(p). (3.5)

In addition,
|Cmax| = max{k : Z≥k ≥ k}, (3.6)

and hence the random variables {Z≥k}k≥1 provide a characterization of |Cmax|.
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3.4.2 A useful heuristic

The identity (3.6) suggests that if the distribution of Z≥k is sufficiently concentrated about its
mean, then it should be the case that

Ep

(
|Cmax|

)
= Θ

(
max{k : Ep(Z≥k) ≥ k}

)
. (3.7)

Define k0 = k0(p) to be the solution of the equation

k0 = Ep(Z≥k0) = V P≥k0(p). (3.8)

Then we are led to expect that
Ep

(
|Cmax|

)
= Θ(k0(p)). (3.9)

Under certain conditions, this heuristic was made rigorous in [14] to analyze percolation on finite
subsets of Zn, n ≤ 6, and it underlies our approach to obtaining bounds on |Cmax| from bounds on
the cluster size distribution P≥k(p). As a reality check, we note that for the random graph it is
possible to verify, with some effort, that as |ε| → 0,

k0(p) =





2ε−2 log(ε3V )(1 + o(1)) below the window,

Θ(V 2/3) inside the window,

2εV (1 + o(1)) above the window.

(3.10)

To leading order the values of (3.10) are the size of the largest cluster of the random graph,
confirming (3.9). Since we are working in settings where random graph scaling should apply,
(3.10) also serves as a guide for our more general transitive graphs.

In particular, as noted in [14], if at the critical threshold we have

P≥k(pc) = Θ(k−1/δ), (3.11)

then k0 = Θ(V δ/(δ+1)) and (3.9) predicts that Epc(|Cmax|) = Θ(V δ/(δ+1)). This provides a connection
between the critical exponent δ and the size of the largest cluster at criticality. If we assume that
χ(pc) is well approximated by Epc(|Cmax|)Ppc(0 ∈ Cmax) ≈ V δ/(δ+1)V −1+δ/(δ+1), it also suggests that
the correct definition of the critical threshold, in general, is that value of p for which χ(p) =
V (δ−1)/(δ+1). Again, a constant factor λ could be introduced on the right side without significant
effect. For a critical branching process, it is the case that δ = 2. For percolation on Zn with n
sufficiently large, it was proved in [25] that δ = 2 in the sense that Pk(pc) = ck−3/2(1 + k−a) for
some a, c > 0. On the other hand, it is believed that δ is strictly greater than 2 below the upper
critical dimension n = 6. Thus we expect that the results of Section 2.2 do not extend to the
spread-out torus for n < 6, and that our definition of pc also requires modification in this case,
namely in (1.7), the exponent 1/3 should be replaced by (δ − 1)/(δ + 1). Logarithmic corrections
may enter the analysis when n = 6.

We have in mind a high-dimensional graph G for which cycles are of limited importance. Since
each vertex has Ω neighbors, criticality corresponds to pΩ ≈ 1, or pc ≈ Ω−1. According to the
above, the value δ = 2 gives the familiar value V 2/3 for the largest critical cluster. How near to
pc can we expect this behavior to hold, i.e., how wide is the critical window? Let us consider
p < pc, which is easier. First consider the Galton-Watson branching process with Poisson offspring
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distribution of mean 1 − ε. This process is known to have total size k with probability precisely
kk−1(k!)−1e−k(1 − ε)k−1eεk, and therefore it has size at least k with probability Θ(k−1/2e−kε2/2).
Now suppose our process, with p = pc−Ω−1ε, is well approximated by this Galton-Watson process.
Then we would have

P≥k(p) ≈ const√
k

e−kε2/2. (3.12)

When k = Θ(V 2/3) and ε = Θ(V −1/3), the exponential of (3.12) is Θ(1), so that P≥k(pc) and
P≥k(p) are of the same order. For ε À V −1/3, however, the exponential of (3.12) goes to zero and
this is no longer the case. This suggests that the system behaves critically when ε = O(V −1/3).

3.4.3 Our method of proof

Our proofs of bounds on |Cmax| proceed as follows. For p ≤ pc, we obtain a mean-field upper bound
on |Cmax| by applying the upper bound

P≥k(p) ≤
√

e

k
e−k/(2χ2), (3.13)

which is valid for k ≥ χ2(p). The bound (3.13) is proved in [4, Proposition 5.1] and [20, (6.77)]
(the proofs apply directly to any finite transitive graph). We use (3.13) in conjunction with (3.4)–
(3.5), choosing k in accordance with the subcritical case in (3.10). The details are carried out in
Section 4.2. For a lower bound on |Cmax|, we prove a variance estimate for Z≥k and use this in
conjunction with the second moment method. The details are carried out in Section 7.

Inside the critical window, our bounds on |Cmax| follow directly from monotonicity and the
subcritical and supercritical bounds. This is discussed in Section 3.6.

In the supercritical phase, the bounds on |Cmax| of Theorem 1.4(i) follow directly from our upper
bounds on P≥k(p), and are derived in Section 6. To prove the upper bound on |Cmax| stated in
Theorem 1.6(ii), we prove another variance estimate for Z≥k. This estimate allows us to bound the
probability that Z≥Nα differs from its expectation V θα(p) by more than a small multiple of V θα(p).
The variance of Z≥Nα is ultimately estimated in terms of the magnetization, and the details are
carried out in Section 9. The restriction ε ≥ V −η in (1.44) (with η ∈ (1

9
, 3

15
) for α ∈ (0, 1)) means

that this upper bound on |Cmax| has not yet been proven for all p above the window.

3.5 The supercritical susceptibility

The magnetization has a useful and standard probabilistic interpretation. We define i.i.d. vertex
variables taking the value “green” and “not green” by declaring that each x ∈ V is green with
probability γ ∈ [0, 1]. The vertex variables are independent of the bond variables. Let G denote
the random set of green vertices. Then, by definition,

M(p, γ) =
V∑

k=1

[1− (1− γ)k]Pp(|C(0)| = k) = Pp,γ(0 ↔ G), (3.14)

where {0 ↔ G} denotes the event that 0 ↔ x for some x ∈ G. Let

χ(p, γ) = (1− γ)
∂

∂γ
M(p, γ) =

V∑

k=0

k(1− γ)kPp(|C(0)| = k) = Ep,γ

(
|C(0)|I(0 ↔/ G)

)
(3.15)

17



and

χ⊥(p, γ) =
V∑

k=0

k[1− (1− γ)k]Pp(|C(0)| = k) = Ep,γ

(
|C(0)|I(0 ↔ G)

)
. (3.16)

The proof of Theorem 1.4(ii) is based on the decomposition

χ(p) = χ(p, γ) + χ⊥(p, γ), (3.17)

which is valid for all γ ∈ [0, 1]. Note that (3.17) reduces to the identity χ(p) = χ(p, 0) when γ = 0.
It follows from (1.47)–(1.48) (with α = 0 in the latter) that M(p, ε2) = Θ(ε) above the window.

For the random graph the largest cluster above the window has size of order εV , so the origin is
in the largest cluster with probability of order ε. Thus the probability that the origin is connected
to the green set G and the probability that the origin is in the largest cluster should both be
Θ(ε), when we choose γ = ε2. Thus we regard the green set G as playing the role of an ersatz
giant cluster, when γ = ε2. From this perspective, χ(p, ε2) corresponds to the expected cluster size
omitting the giant cluster, whereas χ⊥(p, ε2) corresponds to the expected cluster size of a vertex
that is in the largest cluster. Thus we might expect to prove that for p ≥ pc, χ(p, ε2) is bounded
above by O(ε−1) (appealing to the “symmetry rule” of [29] to relate the supercritical susceptibility
with the largest cluster omitted to the symmetric subcritical susceptibility), and that χ⊥(p, ε2)
is bounded above by O(ε2V ). An upper bound on χ(p, γ) will follow easily from our bounds on
the magnetization. To obtain a bound of the form O(ε2V ) for χ⊥(p, ε2), we will make use of the
random variable

ZG =
∑

x∈V
I(x ↔ G), (3.18)

which counts the number of vertices in clusters containing at least one green vertex. This will
require a differential inequality for the expectation of Z2

G, which is proved in Appendix A.3.

3.6 Proof of Theorem 1.3(ii-iii)

Finally, we show that the bounds of Theorem 1.3(ii-iii) for the critical window follow from the
bounds of Theorems 1.2 and 1.4 for the subcritical and supercritical phases.

Proof of (1.22). By the monotonicity of χ(p) in p, the lower bound follows from the lower bound
of (1.15) (with p = pc−ΛΩ−1V −1/3) and the upper bound follows from the upper bound of (1.25)
(with p = pc + ΛΩ−1V −1/3).

Proof of (1.20). The upper bound follows from monotonicity of Ep(|Cmax|) in p and the upper
bound (1.23) (with p = pc + ΛΩ−1V −1/3). The lower bound follows from the lower bounds of
(1.16) and (1.22).

Proof of (1.21). It follows from the upper bound of (1.20) and Markov’s inequality that

Pp

(
|Cmax| ≥ ωV 2/3

)
≤ b5

ω
(3.19)

for all ω > 0. For the complementary bound, we bound Pp(|Cmax| ≥ ω−1V 2/3) below by its value
at p = pc − ΛΩ−1V −1/3 and apply (1.18) in conjunction with (1.22).
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4 The subcritical phase

In Section 4.1, we apply a differential inequality for χ(p) due to Aizenman and Newman [4] to
show that the triangle condition (1.8) implies the bounds (1.13), (1.14) and (1.15), and that the
stronger triangle condition (1.26) implies the bounds (1.30) and (1.31). In Section 4.2, we apply
the bound (3.13) on the cluster size distribution, also due to [4], to prove the upper bounds of
(1.16)–(1.17).

4.1 The subcritical susceptibility and critical threshold

Recall from (1.12) that ∇̄p = max{x,y}∈B∇p(x, y). In Appendix A.1, we prove the differential
inequality

[1− ∇̄p]Ω ≤ −dχ−1

dp
≤ Ω, (4.1)

which is valid for all p ∈ (0, 1). The differential inequality and its proof are due to Aizenman and
Newman [4]. Integration of (4.1) over the interval [p1, p2], together with monotonicity of ∇̄p in p,
gives

[1− ∇̄p2 ]Ω(p2 − p1) ≤ χ−1(p1)− χ−1(p2) ≤ Ω(p2 − p1). (4.2)

Proof of (1.13) assuming (1.8). We set p1 = 0 and p2 = pc in (4.2) and note that χ(0) = 1 and
χ(pc)

−1 = ε0, to obtain (1.13).

Proof of (1.14). This follows from (4.2) with pi defined by χ(pi) = λiV
1/3.

Proof of (1.15). This follows from (4.2) with p1 = p and p2 = pc.

Proof of (1.31). The lower bound has been proved already in (1.15). For the upper bound, we use
the upper bound of (1.15) and (1.26) to see that for p ≤ pc and x 6= y,

∇p(x, y) ≤ K1Ω
−1 + K2V

−1
(

1

ε0 + (1− a0)ε

)3

(4.3)

with a0 = a = K1Ω
−1 + K2λ

3. We now integrate the lower bound of (4.1) over the interval [p, pc],
using (4.3) to bound the triangle diagram. This gives

χ−1(p)− ε0 ≥
∫ ε

0
dε̃

[
1−K1Ω

−1 −K2V
−1

(
1

ε0 + (1− a0)ε̃

)3]

= ε(1−K1Ω
−1)− K2

2V (1− a0)

[
1

ε0
2
−

(
1

ε0 + (1− a0)ε

)2]

= ε(1−K1Ω
−1)− K2

2ε0
2V (1− a0)

[
1− 1

1 + (1− a0)
ε
ε0

][
1 +

1

1 + (1− a0)
ε
ε0

]

≥ ε(1−K1Ω
−1)− K2

ε0
2V (1− a0)

[
1− 1

1 + (1− a0)
ε
ε0

]

= ε
(
1−K1Ω

−1 −K2λ
3 1

1 + (1− a0)ε/ε0

)
. (4.4)

The upper bound in (1.31) is equivalent to (4.4).
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Proof of (1.30). The lower bound of (1.30) was proved already in (1.13). We deduce the upper
bound from the right hand inequality of (1.31) with p = 0, with the last ε replaced by Ωpc (which
is the value of ε when p = 0); in addition we use that (1 − a)(1 − ε) ≤ 1 − ε ≤ ε0, which follows
from the first inequality of (1.31) with p = 0.

4.2 Upper bound on the largest subcritical cluster

Proof of the upper bound of (1.16) and of (1.17). We will prove that

Ep

(
|Cmax|

)
≤ 2χ2(p) log(V/χ3(p)) (4.5)

and

Pp

(
|Cmax| ≤ 2χ2(p) log(V/χ3(p))

)
≥ 1−

√
e

[2 log(V/χ3(p))]3/2
, (4.6)

if χ(p) ≤ e−2V 1/3. The desired bounds follow immediately from (4.5) and (4.6), provided λ =
V −1/3χ(pc) ≤ e−2. However, it follows from (1.9) and our assumptions a0 ≤ b0 and V −1/3 ≤ λb0

that λ3 ≤ b0 + λ3b3
0, which gives λ3 ≤ b0(1− b3

0)
−1 ≤ e−2 (since we take b0 to be small).

To prove (4.6), we let A = log(V/χ3(p)) and k = 2Aχ2(p). By assumption, A ≥ 6 ≥ 1/2, and
hence k ≥ χ2(p). We can therefore apply (3.4) and (3.13) to obtain

Pp

(
|Cmax| ≥ 2Aχ2(p)

)
≤ V P≥2Aχ2(p)(p)

2Aχ2(p)
≤ V

√
e

(2A)3/2χ3(p)
e−A =

√
e

(2A)3/2
, (4.7)

which is the desired bound (4.6).
To prove (4.5), we set k = 2(A− 1)χ2(p). Combining (3.5) and (3.13) leads to

Ep

(
|Cmax|

)
≤ 2(A− 1)χ2(p)

[
1 +

V
√

e

(2(A− 1))3/2χ3(p)
e−A+1

]

= 2Y χ2(p) log(V/χ3(p))

(4.8)

with

Y =
(
1− 1

A

)[
1 +

(
e

2(A− 1)

)3/2]
. (4.9)

To complete the proof, it suffices to show that

(
e

2(A− 1)

)3/2

≤ 1

A
, (4.10)

since this implies that Y ≤ 1. To prove (4.10), we use the monotonicity of the function x 7→
(x− 1)3/x2 and the fact that A ≥ 6 to conclude that

8(A− 1)3

A2
≥ 1000

36
≥ e3. (4.11)
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5 The magnetization

In this section, we prove Theorem 1.7. This theorem provides upper and lower bounds on the
magnetization, which is defined by

M(p, γ) =
V∑

k=1

[1− (1− γ)k]Pp(|C(0)| = k). (5.1)

For fixed p, the function M(p, ·) is strictly increasing, with M(p, 0) = 0 and M(p, 1) = 1. In
addition, for γ ∈ (0, 1), M(p, γ) is strictly increasing in p. Finally, recalling (3.15), we note that
∂M/∂γ = (1− γ)−1χ is monotone decreasing in γ. Since M(p, 0) = 0 this implies that

γ

1− γ
χ(p, γ) ≤ M(p, γ) ≤ γχ(p, 0). (5.2)

5.1 Bounds on the magnetization

We formulate our results in the general setting of a connected transitive graph G with V vertices
and degree Ω, not necessarily obeying the triangle condition (1.8). Instead, we will assume that
one or several of the following conditions hold:

pc ≤ a1, (5.3)

Ωpc ≤ 1 + a2, (5.4)

Ωpc ≥ 1− a3, (5.5)

and, last but not least, the triangle condition (1.8) itself. The constants a0, a1, a2 and a3 in
the following statements refer to these assumptions, and when a constant is not mentioned in a
theorem, the corresponding assumption is not used.

Note that when we do assume the triangle condition, then the assumptions (5.3)–(5.5) all
follow, with a1, a2, a3 determined in terms of a0 and λ, provided V is large enough. To see this, we
note that for any bond {x, y} ∈ B, we have p ≤ τp(x, y) ≤ ∇p(x, y) (just take u = v = x in (1.1)),
and hence

pc ≤ a0 (5.6)

whenever the triangle condition (1.8) holds. In addition, (5.4)–(5.5) follow from (1.13). Therefore,
in particular, the constants a1, a2 and a3 can be made as small as desired by assuming that a0 and
ε0 = λ−1V −1/3 are sufficiently small (as assumed in the theorems in Section 1.3).

The following propositions and corollaries immediately imply Theorem 1.7. The first pair gives
lower bounds on the magnetization, and the second pair gives upper bounds. For Corollary 5.2,
we recall that Nα = ε−2(εV 1/3)α was defined in (1.42).

Proposition 5.1. (i) Let 0 < p < 1 and 0 < γ < 1, and let K = 1 + Ωp
1−p

. Then

M(p, γ) ≥ 1

2K

[√
4Kγ + χ−2(p)− χ−1(p)

]
, (5.7)

so that, in particular,

M(p, γ) ≥
√

4K + 1− 1

2K
min{√γ, γχ(p)}. (5.8)
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(ii) If 0 < p0 ≤ p < 1, 0 < γ0 ≤ γ < 1 and 0 < α̃ < 1, then

M(p, γ) ≥ min

{(
γ

γ0

)α̃

M(p0, γ0),
p0

p
M(p0, γ0) + (1− α̃)

p− p0

p

}
. (5.9)

Corollary 5.2. Assume that (5.3)–(5.4) hold with a1 and a2 sufficiently small.
(i) If 0 ≤ γ ≤ 1 and p ≤ pc, then

M(p, γ) ≥ 1

3
min{√γ, γχ(p)}. (5.10)

(ii) Let 0 ≤ α < 1, α̃ = (2−α)−1, ρ > 0, and p = pc+Ω−1ε. Let b13 = λ−2α̃ρ−α̃. If b13V
−1/3 ≤ ε ≤ 1

then
M(p, ρN−1

α ) ≥ ε

3
min{(1− α̃), ρα̃λαα̃}. (5.11)

Lemma 5.3. Let p ≤ pc and 0 ≤ γ ≤ 1. If (1.8) and (5.5) hold with a0 and a3 sufficiently small,
then

M(p, γ) ≤ min{
√

12γ, γχ(p)}. (5.12)

Proposition 5.4. Let p = pc + Ω−1ε ≥ pc and 0 ≤ γ ≤ 1. If (1.8) and (5.5) hold with a0 and a3

sufficiently small, then

M(p, γ) ≤
√

12γ + 13ε. (5.13)

Proof of Theorem 1.7. This is an immediate consequence of Corollary 5.2, Lemma 5.3 and Propo-
sition 5.4.

Note that for p ≤ pc the lower bound (5.10) and the upper bound (5.12) differ only by a
constant, for all γ. For p ≥ pc, our results are much weaker: If we specialize to γ proportional to
N−1

α , and assume that εV 1/3 is large enough (in particular, this implies that N−1
α ≥ ε2), then our

lower and upper bounds (5.11) and (5.13) differ only by a constant.
Our bounds on the magnetization are proved using the three differential inequalities stated in

the next lemma.

Lemma 5.5. If 0 < p < 1 and 0 < γ < 1, then

(1− p)
∂M

∂p
≤ Ω(1− γ)M

∂M

∂γ
, (5.14)

M ≤ γ
∂M

∂γ
+ M2 + pM

∂M

∂p
, (5.15)

and

M ≥ κ(p)(1− γ)M2∂M

∂γ
(5.16)

where

κ(p) =

[(
Ω

2

)
p2(1− p)Ω−2

[
(1−∇max

p )2 −∇max
p

]
− p−∇max

p

]
pΩ. (5.17)
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The differential inequalities (5.14)–(5.15) were derived and used by Aizenman and Barsky [2]
to prove sharpness of the percolation phase transition on Zn, and will be used to prove our lower
bounds on M(p, γ). The derivations in [2] extend without difficulty to an arbitrary transitive
graph, and will not be repeated here. The differential inequality (5.16), which is a variant of an
inequality derived by Barsky and Aizenman [7], will be used to prove our upper bounds on M(p, γ).
We give a proof of (5.16) in Appendix A.2.

5.2 Lower bounds on the magnetization

In this section, we prove Proposition 5.1 and Corollary 5.2, using the first two differential inequal-
ities of Lemma 5.5.
Proof of Proposition 5.1. (i) We fix p ∈ (0, 1), and drop the p dependence from the notation.
Inserting (5.14) into (5.15), defining K̃ = Ωp

1−p
, and using 1− γ ≤ 1, we get

M ≤ γ
dM

dγ
+ M2 + K̃M2dM

dγ
. (5.18)

Since M > 0 as long as γ > 0, we get

1

M

dγ

dM
− 1

M2
γ ≤ K̃ +

dγ

dM
, (5.19)

where we are using the fact that M(p, ·) has a well-defined inverse function. Therefore,

d

dM

(
γ

M

)
≤ K̃ +

dγ

dM
. (5.20)

Next we integrate (5.20) and use that γ(0) = 0 and limM→0
γ(M)

M
= γ′(0) = 1/M ′(0) = χ−1(p)

to get
γ

M
≤ χ−1 + K̃M + γ, (5.21)

where we used the shorthand χ−1 for χ−1(p). Observing that 1− (1− γ)k ≥ 1− (1− γ) = γ, we
see from (5.1) that γ ≤ M , which simplifies (5.21) to

γ

M
≤ χ−1 + KM, (5.22)

where K = K̃ + 1. Multiplying by M/K and completing the square on the right side, we thus
obtain

γ

K
+

[
χ−1

2K

]2

≤
[
M +

χ−1

2K

]2

. (5.23)

Since M ≥ 0, this implies that

M ≥
√√√√ γ

K
+

[
χ−1

2K

]2

− χ−1

2K
. (5.24)

This completes the proof of (5.7).
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To prove (5.8), let us first assume that γ ≥ χ−2(p). By (5.7) and the fact that the function
f(x) = 1√

x
(
√

x + χ−2 − χ−1) is increasing, we conclude that

M(p, γ) ≥
√

γ

K
f(4Kγ)

≥
√

γ

K
f(4Kχ−2(p)) =

√
4K + 1− 1

2K

√
γ

=

√
4K + 1− 1

2K
min{√γ, γχ(p)}. (5.25)

On the other hand, if γ ≤ χ−2(p), we use the fact that the function g(x) = 1
x
(
√

x + χ−2 − χ−1) is
decreasing, together with the bound M(p, γ) ≥ 2γg(4Kγ) of (5.7), to arrive at the same conclusion.
This completes the proof of (i).

(ii) The result is immediate if γ0 = γ or p0 = p so we assume that γ0 < γ and p0 < p. We rewrite
(5.15) as

0 ≤ 1

M

∂M

∂γ
+

1

γ

∂

∂p
(pM − p), (5.26)

and then integrate (5.26) over the rectangle [γ0, γ]× [p0, p]. This yields

0 ≤
∫ p

p0

dp̃ log

(
M(p̃, γ)

M(p̃, γ0)

)
+

∫ γ

γ0

dγ̃
1

γ̃
(pM(p, γ̃)− p0M(p0, γ̃)− (p− p0)) . (5.27)

Since
0 ≤ M(p0, γ0) ≤ M(p̃, γ̃) ≤ M(p, γ) (5.28)

whenever (p̃, γ̃) ∈ [γ0, γ]× [p0, p], it follows that

0 ≤ (p− p0) log

(
M(p, γ)

M(p0, γ0)

)
+ log

(
γ

γ0

)
(pM(p, γ)− p0M(p0, γ0)− (p− p0)) . (5.29)

Dividing by log(γ/γ0), we conclude that

M(p, γ) ≥ p0

p
M(p0, γ0) +

p− p0

p

[
1− log{M(p, γ)/M(p0, γ0)}

log{γ/γ0}

]
. (5.30)

If M(p, γ)/M(p0, γ0) ≤ (γ/γ0)
α̃, then (5.30) gives

M(p, γ) ≥ p0

p
M(p0, γ0) +

p− p0

p

[
1− α̃

]
. (5.31)

If, on the other hand, M(p, γ)/M(p0, γ0) ≥ (γ/γ0)
α̃, then it is trivially the case that

M(p, γ) ≥ M(p0, γ0)(γ/γ0)
α̃. (5.32)

Therefore, as desired,

M(p, γ) ≥ min

{(
γ

γ0

)α̃

M(p0, γ0),
p0

p
M(p0, γ0) + (1− α̃)

p− p0

p

}
. (5.33)
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Proof of Corollary 5.2. (i) The function K = K(p) = 1 + Ωp/(1 − p) is increasing in p, so
K(p) ≤ K(pc) for p ≤ pc. Since the function (

√
4K + 1 − 1)/2K is decreasing in K, for a lower

bound we can replace K by K(pc) in (5.8). Since K(pc) is bounded above by 2 in the limit as a1

and a2 go to zero, (5.10) then follows.

(ii) We apply Proposition 5.1(ii), whose conclusion is repeated above in (5.33), with p0 = pc,
γ = ρN−1

α and γ0 = ε0
2 = χ−2(pc). The requirement γ ≥ γ0 for (5.33) is equivalent to our

hypothesis that ε ≥ b13V
−1/3. It suffices to show that

(
γ

γ0

)α̃

M(pc, γ0) ≥ ε

3
ρα̃λαα̃ (5.34)

and
pc

p
M(pc, γ0) + (1− α̃)

p− pc

p
≥ ε

3
(1− α̃). (5.35)

For (5.34), we use (5.8) and the observation in the proof of part (i) to see that

M(pc, γ0) ≥ χ−1(pc)

2K

[√
4K + 1− 1

]
≥ 1

3
ε0 (5.36)

if a1 and a2 are sufficiently small. Since (γ/γ0)
α̃ = ρα̃λαα̃(ε/ε0), (5.34) follows. For (5.35), we

bound the first term on the left side below by zero, and note that

p− pc

p
=

ε

ε + Ωpc

≥ ε

3
, (5.37)

since ε ≤ 1 by assumption and Ωpc ≤ 2 if a2 is small enough.

5.3 Upper bounds on the magnetization

We now prove Lemma 5.3 and Proposition 5.4. Lemma 5.3 is proved by integration of the differ-
ential inequality (5.16), assuming the triangle condition. We then use the extrapolation principle
of [2, 3, 7] to convert the upper bound on M(pc, γ) to an upper bound valid for p > pc. This is
perhaps surprising, since M is an increasing function of p. However, it is also increasing in γ, and
we will see that it is possible to use the differential inequality (5.14) to compensate for an increase
in p with a decrease in γ.

Proof of Lemma 5.3. We first note that M(p, γ) ≤ γχ(p) for all p and γ, by (5.2). Since M(·, γ)
is increasing, it suffices to prove that

M(pc, γ) ≤
√

12γ. (5.38)

We assume that the triangle condition is satisfied and that (5.5) holds for a sufficiently small
constant a3. Under these conditions, 1 − a3 ≤ Ωpc ≤ (1 − a0)

−1 (by (1.13)), pc ≤ a0 and
Ω = Ωpc/pc ≥ (1− a3)/a0, so (5.16) implies that

M(pc, γ) ≥ 1

2e

[
1−O(a0 ∨ a3)

]
(1− γ)

∂M(pc, γ)

∂γ
M(pc, γ)2. (5.39)
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For p = pc, this gives
1

2

∂M2

∂γ
≤ 2e

1− γ

[
1−O(a0 ∨ a3)

]
. (5.40)

We integrate (5.40) over the interval [0, γ], using M(pc, 0) = 0, to see that

M2(pc, γ) ≤ 4eγ

1− γ

[
1−O(a0 ∨ a3)

]
. (5.41)

For γ ∈ [0, 1
12

], this implies (5.38), provided a0 and a3 are sufficiently small. Finally, we note that
we can remove the restriction γ ∈ [0, 1

12
], since trivially, M(p, γ) ≤ 1 ≤ √

12γ if γ ≥ 1
12

.

Proof of Proposition 5.4. Following [7], we apply the extrapolation principle used in [2], to extend
(5.38) to (5.13). The extrapolation principle is explained in [3] (see also [18]). In our setting, the
finite size effect will need to be taken into account. We find it most convenient to use the variable
h rather than γ, and define M̃(p, h) = M(p, 1− e−h), for h ≥ 0.

Assuming that ε ≤ 1, the differential inequality (5.14) implies that

∂M̃

∂p
≤ AΩM̃

∂M̃

∂h
(5.42)

where A = (1 − pc − Ω−1)−1 = 1 + O(a0) + O(a3). For fixed m ∈ [0, 1] and fixed p ∈ (0, 1), we
can solve the equation M̃(p, h) = m for h = h(p), so that M̃(p, h(p)) = m. Differentiation of this
identity with respect to p gives

∂M̃

∂p
+

∂M̃

∂h

∂h

∂p

∣∣∣∣∣
M̃=m

= 0. (5.43)

Therefore,

0 ≤ − ∂h

∂p

∣∣∣∣∣
M̃=m

=
∂M̃
∂p

∂M̃
∂h

≤ AΩm. (5.44)

The upper and lower bounds of (5.44) imply that a contour line M̃ = m1 in the (p, h)-plane
(with p-axis horizontal and h-axis vertical) passing through a point P1 = (p1, h1) is such that
M̃(P ) ≤ m1 for all points P in the first quadrant that lie on or below the lines of slope 0 and
−AΩm1 through P1; see Figure 1. In addition, if P2 = (p2, h2) is on the line through P1 with slope
−AΩm1, with p2 < p1, then P2 lies above the contour line M̃ = m1, so if we set m2 = M̃(P2),
then m2 ≥ m1. We will use the fact that m2 ≥ m1 below.

Fix h, and fix ε > 0. Let P1 = (pc + εΩ−1, h), and define m1 = m1(ε) = M̃(P1). Let

ε′ = ε +
h

Am1

, (5.45)

and define P2 = (pc, Am1ε
′) and m2 = M̃(P2). The point P2 lies on the line through P1 with slope

−AΩm1. Therefore, as observed above, m1 ≤ m2. Applying (5.38) gives

M̃(pc + εΩ−1, h) = m1 ≤ m2 = M̃(pc, Am1ε
′) ≤

√
12(1− e−Am1ε′)1/2

=
√

12
(
1− e−Am1ε + e−Am1ε[1− e−h]

)1/2

≤
√

12(Am1ε + γ)1/2, (5.46)
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p
pc

P1 (pc + εΩ−1, h)

P2 (pc, Am1ε
′)

h

M̃ ≤ m1

M̃ = m1

Figure 1: The extrapolation geometry.

with γ = 1− e−h. The inequality
m2

1 ≤ 12(Am1ε + γ) (5.47)

has roots
m± = 6Aε±

√
12γ + (6Aε)2. (5.48)

The root m+ is positive and m− is negative. Thus we have

M(pc + εΩ−1, γ) = m1 ≤ m+ ≤ 6Aε +
√

12γ + (6Aε)2 ≤ 12Aε +
√

12γ, (5.49)

using
√

a + b ≤ √
a +

√
b in the last step. This completes the proof of (5.13), since we can choose

A arbitrarily close to 1 by choosing a0 and a3 sufficiently small.

6 The cluster size distribution

In this section, we prove Theorems 1.3(i), 1.4(i) and 1.6(i). The magnetization

M(p, γ) =
V∑

k=1

[1− (1− γ)k]Pp(|C(0)| = k) (6.1)

is a generating function for Pp(|C(0)| = k). In the spirit of a Tauberian theorem, we will use
the bounds on M(p, γ) established in Section 5 to obtain bounds on P≥s(p). We recall the upper
bound

M(p, γ) ≤
√

12γ + 13ε, (6.2)

proved in (5.13) for all p ≥ pc provided a0 and a3 are sufficiently small, and the lower bound

M(p, γ) ≥ 1

3
min{√γ, γχ(p)}, (6.3)
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proved in (5.10) for all p ≤ pc provided a1 and a2 are sufficiently small. The discussion of Section 5.1
shows that the constants a1, a2 and a3 can be made arbitrarily small if a0 ≤ b0, ε0 ≤ b0 and b0 is
chosen small enough.

The cluster size distribution and magnetization are related by the following lemma.

Lemma 6.1. Let p ∈ [0, 1], k > 0 and 0 ≤ γ, γ̃ ≤ 1. Then

P≥k(p) ≤ e

e− 1
M(p, k−1), (6.4)

P≥k(p) ≥ M(p, γ)− γ

γ̃
eγ̃kM(p, γ̃). (6.5)

Proof. The bound (6.4) follows immediately from the definition of M and the fact that 1− e−1 ≤
1− (1− k−1)` whenever ` ≥ k.

To prove (6.5), we note that [1 − (1 − γ)`] ≤ `γ. Also, `γ̃ ≤ e`γ̃ − 1 = e`γ̃(1 − e−`γ̃), which
combined with e−γ̃ ≥ 1− γ̃ gives `γ̃ ≤ e`γ̃(1− (1− γ̃)`). Therefore,

M(p, γ) =
V∑

`=1

(1− (1− γ)`)Pp(|C(0)| = `)

≤ γ
∑

`≤k

`Pp(|C(0)| = `) +
∑

`≥k

Pp(|C(0)| = `)

≤ γ

γ̃
eγ̃kM(p, γ̃) + P≥k(p). (6.6)

We will use (6.2)–(6.3) and Lemma 6.1 to prove the bounds in the following lemma.

Lemma 6.2. There is a constant b0 such that the following statements hold provided ε0 ≤ b0 and
the triangle condition (1.8) is valid with a0 ≤ b0.
(i) If p = pc + Ω−1ε ≥ pc then

P≥k(p) ≤ 21ε + 6k−1/2. (6.7)

(ii) If p ≤ pc then
1

360
k−1/2 ≤ P≥k(p) ≤ 6k−1/2 (6.8)

provided k ≤ 1
3600

χ(p)2 for the lower bound (this assumption is not needed for the upper bound).
(iii) If p = pc + εΩ−1 (ε may be positive or negative here) and k ≤ [100(|ε|+ ε0)]

−2 then

1

360
k−1/2 ≤ P≥k(p) ≤ 6k−1/2. (6.9)

Proof. (i) Inserting (6.2) into (6.4) gives (6.7).
(ii) For the upper bound in (6.8), we take p ≤ pc and note that P≥k(p) ≤ P≥k(pc) ≤ 6k−1/2, using
monotonicity in the first step and (6.7) in the second. For the lower bound, we apply (6.5) with
γ̃ = 1/k. Since

M(p, k−1) ≤ M(pc, k
−1) ≤

√
12/k (6.10)

by (6.2), (6.5) implies that

P≥k(p) ≥ M(p, γ)−
√

12kγe. (6.11)
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If γ ≥ χ−2(p), then (6.3) implies M(p, γ) ≥ 1
3

√
γ, and hence

P≥k(p) ≥ 1

3

√
γ −

√
12kγe ≥ 1

3

√
γ

(
1− 30

√
γk

)
. (6.12)

The choice γ = 1
602k

gives the lower bound of (6.8).
(iii) To prove the upper bound of (6.9), we note that k ≤ [100(|ε| + ε0)]

−2 implies |ε| ≤ 1
100

k−1/2.
It then follows from (6.4) and (6.2) that

P≥k(p) ≤ P≥k(pc + 0.01k−1/2Ω−1) ≤ e

e− 1

[√
12 + 0.13

]
k−1/2, (6.13)

which gives the desired bound. For the lower bound, we note that P≥k(p) ≥ P≥k(pc − |ε|Ω−1) and
that the condition on k in (6.9) implies the condition on k in (6.8) for pc − |ε|Ω−1, by the lower
bound on the susceptibility in (1.15). Therefore (6.9) follows from (6.8).

Proof of Theorem 1.3(i). Lemma 6.2(iii) immediately implies the statement of Theorem 1.3(i)
with b1 = [100(Λ + λ−1)]−2, b2 = 1/360 and b3 = 6.

Proof of Theorem 1.4(i). We set k = V 2/3 in (3.5) and apply (6.7) to obtain, as required,

Ep

(
|Cmax|

)
≤ 21εV + 7V 2/3. (6.14)

The bound (1.24) then follows from Markov’s inequality.
Recall from (1.41) that the percolation probability θα is defined, for p > pc and 0 < α < 1, by

θα(p) = P≥Nα(p), (6.15)

with Nα = ε−2(εV 1/3)α. We now prove the bound (1.43) on θα(p) of Theorem 1.6(i).

Proof of Theorem 1.6(i). (Upper bound on θα(p).) If α > 0 and εV 1/3 ≥ 1, then Nα ≥ ε−2 and the
upper bound of (1.43) follows from (6.7).

(Lower bound on θα(p).) We use (6.5) with k = Nα, γ̃ = N−1
α , and γ = ρN−1

α (with ρ > 0 to be
chosen below) to obtain

θα(p) ≥ M(p, ρN−1
α )− ρeM(p, N−1

α ). (6.16)

Let α̃ = (2− α)−1. Let b9 = λ−2α̃ρ−α̃, and assume that ε ≥ b9V
−1/3. By Corollary 5.2(ii),

M(p, ρN−1
α ) ≥ ε

3
min{(1− α̃), ρα̃λαα̃}. (6.17)

Assuming that Nα ≥ ε−2, which follows if we also assume b9 ≥ 1, it follows from Proposition 5.4
that

ρeM(p,N−1
α ) ≤ ρe(

√
12 + 13)ε. (6.18)

Therefore,

θα(p) ≥ ε
(

1

3
min{(1− α̃), ρα̃λαα̃} − ρe(

√
12 + 13)

)
. (6.19)

Since α < 1 implies α̃ < 1, we can make the ratio of the first to the second term as large as we
want by choosing ρ sufficiently small depending on α and λ. This gives the lower bound of (1.43),
with b9 and b10 depending on α and λ.
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7 Lower bound on the largest subcritical cluster

In this section, we complete the proof of Theorem 1.2(ii) by proving the lower bound of (1.16),
and (1.18). Given s > 0, let Z≥s be the number of vertices that lie in clusters of size s or larger,
as defined in (3.2). We will use the bound on the variance of Z≥s given in the following lemma.

Lemma 7.1. Let s > 0 and p ∈ (0, 1). Then

Varp [Z≥s] ≤ V χ(p) . (7.1)

Proof. Let
χ≥s(p) = Ep

[
|C(0)|I[|C(0)| ≥ s]

]
. (7.2)

We will prove that
Ep

(
Z2
≥s

)
≤ (Ep [Z≥s])

2 + V χ≥s(p)
(
1− P≥s(p)

)
, (7.3)

which implies (7.1).
We start by rewriting the expectation of Z2

≥s as

Ep

(
Z2
≥s

)
=

∑

x,y∈V

∑
S:x∈S,
|S|≥s

∑
T :y∈T,
|T |≥s

Pp

(
C(x) = S, C(y) = T

)
. (7.4)

Next, we observe that C(x) and C(y) must be identical if they are not disjoint. As a consequence,
the sum decomposes into two terms: the term

∑

x,y∈V

∑
S:x,y∈S,
|S|≥s

Pp

(
C(x) = S

)
=

∑

x∈V

∑
S:x∈S,
|S|≥s

|S|Pp

(
C(x) = S

)
= V χ≥s(p) (7.5)

and the term
∑

x∈V

∑
S:x∈S,
|S|≥s

∑

y∈V\S

∑
T :y∈T,
|T |≥s

Pp

(
C(x) = S, C(y) = T

)

=
∑

x∈V

∑
S:x∈S,
|S|≥s

Pp

(
C(x) = S

) ∑

y∈V\S
Pp

(
|C(y)| ≥ s | C(x) = S

)
. (7.6)

Given a connected set S contributing to the sum in (7.6), we denote the set of all edges which
either join two points in S or join a point in S to a point in V \ S by B+(S). Given y ∈ V \ S,
may then rewrite the conditional probability as

Pp

(
|C(y)| ≥ s | C(x) = S

)
= Pp

(
|C(y)| ≥ s | all edges in B+(S) are vacant

)
. (7.7)

By the FKG inequality, (7.7) is bounded above by the unconditioned probability Pp

(
|C(y)| ≥ s

)
.

Therefore, (7.6) is bounded by
∑

x∈V

∑
S:x∈S,
|S|≥s

Pp

(
C(x) = S

) ∑

y∈V\S
Pp

(
|C(y)| ≥ s

)

= V
∑

S:0∈S,
|S|≥s

(
V − |S|

)
Pp

(
C(0) = S

)
Pp

(
|C(0)| ≥ s

)

= (Ep [Z≥s])
2 − V χ≥s(p)P≥s(p). (7.8)

The combination of (7.5) and (7.8) proves (7.3) and hence (7.1).
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Proof of (1.18). Let p ≤ pc and ω ≥ 1. Assume that ε0 ≤ b0 and that (1.8) holds for some a0 ≤ b0

with b0 as in Lemma 6.2. We must show that

Pp

(
|Cmax| ≥ χ2(p)

3600ω

)
≥

(
1 +

36χ3(p)

ωV

)−1

. (7.9)

By definition, |Cmax| ≥ s if and only if Z≥s > 0. By the Cauchy–Schwarz inequality,

Ep

[
Z≥s

]
= Ep

[
Z≥sI[Z≥s > 0]

]
≤

√
Ep

(
Z2
≥s

)
Pp

(
Z≥s > 0

)
(7.10)

and thus

Pp

(
|Cmax| ≥ s

)
= Pp

(
Z≥s > 0

)
≥

(
Ep

[
Z≥s

])2

Ep

(
Z2
≥s

) = (1 + x)−1, (7.11)

where

x =
Varp

[
Z≥s

]

(
Ep

[
Z≥s

])2 . (7.12)

By Lemma 7.1, the variance of Z≥s is bounded by V χ(p). Combined with (3.3), this gives x ≤
χ(p)V −1[P≥s(p)]−2 and thus

Pp

(
|Cmax| ≥ s

)
≥

(
1 +

χ(p)

V [P≥s(p)]2

)−1

. (7.13)

To complete the proof, we note that (7.9) is trivial if ω ≥ χ2(p)/3600. For ω ≤ χ2(p)/3600, we

choose s = χ2(p)/3600ω and use (6.8) to bound P≥s(p) from below by
√

ω
6χ(p)

. This gives (7.9).

Proof of the lower bound of (1.16). We recall from (1.9) that χ3(p)/V ≤ χ3(pc)/V = λ3 ≤ a0+V −1.
Therefore, by (7.9), we can choose a0 and V −1 sufficiently small that, say,

Ep

(
|Cmax|

)
≥ χ2(p)

3600
Pp

(
|Cmax| ≥ χ2(p)

3600

)
≥ 10−4χ2(p). (7.14)

This gives the lower bound of (1.16).

8 Upper bound on the supercritical susceptibility

In this section, we prove the bound (1.25) of Theorem 1.4(ii), by showing that if a0 and a3 are
sufficiently small and p = pc + Ω−1ε with 0 ≤ ε ≤ 1, then

χ(p) ≤ 81V 1/3 + (81ε)2V. (8.1)

The proof of (8.1) is based on the decomposition

χ(p) = χ(p, γ) + χ⊥(p, γ) (8.2)

discussed in Section 3.5, where

χ(p, γ) = Ep,γ

(
|C(0)|I(0 6↔ G)

)
=

V∑

k=0

k(1− γ)kPp(|C(0)| = k) (8.3)
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and

χ⊥(p, γ) = Ep,γ

(
|C(0)|I(0 ↔ G)

)
=

V∑

k=0

k[1− (1− γ)k]Pp(|C(0)| = k). (8.4)

For an upper bound on χ(p, γ), it follows from Proposition 5.4 and the lower bound of (5.2)
that

χ(p, γ) ≤
√

12

γ
+

13ε

γ
. (8.5)

whenever a0 and a3 are sufficiently small and p = pc +Ω−1ε ≥ pc. This gives a bound O(ε−1), if we
choose γ proportional to ε2. To obtain a bound of the form O(ε2V ) for χ⊥(p, ε2), we will make use
of the random variable ZG =

∑
x∈V I(x ↔ G). As a first step, we prove the following two lemmas,

which give bounds on χ⊥(p, γ) that are valid for all p and γ.

Lemma 8.1. Let 0 ≤ p ≤ 1 and 0 ≤ γ ≤ 1. Then

χ⊥(p, γ) ≤ 1

V
Ep,γ(Z

2
G) ≤ V M2(p, γ) + χ⊥(p, γ), (8.6)

Proof. Under the condition that 0 ↔ G, |C(0)| can be bounded by the number of vertices that are
connected to a green vertex, so that

|C(0)|I(0 ↔ G) ≤ ∑

x∈V
I(x ↔ G)I(0 ↔ G). (8.7)

Combined with transitivity and the definition of ZG, this implies the lower bound in (8.6).
To prove the upper bound, we decompose the expectation of Z2

G as

Ep,γ(Z
2
G) =

∑

x,y∈V
Ep,γ[I(x ↔ G)I(y ↔ G)I(x 6↔ y)]

+
∑

x,y∈V
Ep,γ[I(x ↔ G)I(y ↔ G)I(x ↔ y)]. (8.8)

As an upper bound, the three events in the first term can be replaced by {x ↔ G} ◦ {y ↔ G}.
We then use the BK inequality (with respect to the joint bond/vertex measure) to bound the first
term by

∑

x,y∈V
Ep,γ[I(x ↔ G)]Ep,γ[I(y ↔ G)] = V 2M2(p, γ). (8.9)

Since the second term can be rewritten as

∑

x,y∈V
Ep,γ[I(x ↔ G)I(x ↔ y)] =

∑

x∈V
Ep,γ[|C(x)|I(x ↔ G)] = V χ⊥(p, γ), (8.10)

this proves the upper bound in (8.6).

Lemma 8.2. Let 0 ≤ p ≤ 1 and 0 ≤ γ ≤ 1. Then

γ

1− γ
Ep,γ

[
|C(0)|2I(0 6↔ G)

]
≤ χ⊥(p, γ) ≤ γχ3(p). (8.11)
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Proof. We first note that

1

1− γ
Ep,γ

[
|C(0)|2I(0 6↔ G)

]
=

V∑

k=1

(1− γ)k−1k2Pp(|C(0)| = k) =
∂χ⊥(p, γ)

∂γ
(8.12)

is monotone decreasing in γ. Using this fact and the observation that χ⊥(p, 0) = 0, integration
over [0, γ] gives

γ
1

1− γ
Ep,γ

[
|C(0)|2I(0 6↔ G)

]
≤ χ⊥(p, γ) ≤ γ

[
1

1− γ
Ep,γ

[
|C(0)|2I(0 6↔ G)

]]

γ=0

. (8.13)

The right hand side is simply γEp[|C(0)|2], which is less than γχ(p)3 by the tree-graph inequalities
[4].

In Appendix A.3, we use Lemmas 8.1–8.2 to derive the differential inequality

∂

∂p
Ep,γ(Z

2
G) ≤

3Ω

1− p

1− γ

γ
M(p, γ)Ep,γ(Z

2
G), (8.14)

for any 0 ≤ p ≤ 1 and 0 ≤ γ ≤ 1. We use this to prove the following lemma, which is the final
ingredient needed for the proof of (8.1).

Lemma 8.3. If a0 and a3 are sufficiently small, p = pc + Ω−1ε ≥ pc and 0 ≤ γ ≤ 1, then

χ⊥(p, γ) ≤ 13γV exp
{

3(1− γ)

1− p

(√
12

ε2

γ
+ 13

ε2

γ

)}
. (8.15)

Proof. We divide (8.14) by the expectation on its right side and integrate over the interval [pc, p].
Since M(p, γ)/(1 − p) is monotone increasing in p, the right side (after the above division) is
bounded by its value at the upper limit p of integration. This leads to

Ep,γ(Z
2
G) ≤ Epc,γ(Z

2
G) exp

{
3ε

1− p

1− γ

γ
M(p, γ)

}
. (8.16)

We will show that
Epc,γ(Z

2
G) ≤ 13γV 2. (8.17)

With (8.6), (8.16) and Proposition 5.4, this gives the desired estimate. To prove (8.17), we combine
the bounds of Lemmas 8.1 and 8.2 with Proposition 5.4, to get

Epc,γ(Z
2
G) ≤ 12γV 2 + γχ3(pc)V = 12γV 2 + γλ3V 2. (8.18)

It suffices to show that λ ≤ 1. If V = 1, (8.18) is trivial, so let us assume that V ≥ 2. In this case
we may use the bound (1.9) to conclude that λ ≤ 1 whenever a0 ≤ 1/2.

Proof of Theorem 1.4(ii). It follows from (8.2), (8.5) and (8.15) that

χ(p) ≤ 1

ε

(√
12

ε2

γ
+ 13

ε2

γ

)
+ 13γV exp

{
3

1− p

(√
12

ε2

γ
+ 13

ε2

γ

)}
. (8.19)
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To estimate the factor 1− p, we use the bound (5.6) and the definition (5.5) of a3 to see that

1− p = 1− pc − Ω−1ε ≥ 1− a0 − a0

1− a3

(8.20)

whenever 0 ≤ ε ≤ 1. Setting γ = 52ε2, and assuming that a0 and a3 are chosen small enough to

ensure that 1
1−p

(
√

3/13 + 1/4) ≤ 3/4, we then get

χ(p) ≤ 3

4ε
+ (26ε)2V e9/4 ≤ 3

4ε
+ (81ε)2V. (8.21)

Let ε′ = 1
81

V −1/3. We distinguish the cases ε < ε′ and ε ≥ ε′. In the first case, we use monotonicity
and (8.21) to obtain

χ(p) ≤ χ(pc + Ω−1ε′) ≤ 3

4
81V 1/3 + V 1/3 ≤ 81V 1/3. (8.22)

If ε ≥ ε′, we use ε−1 ≤ 81V 1/3 to obtain

χ(p) ≤ 3

4
81V 1/3 + (81ε)2V ≤ 81V 1/3 + (81ε)2V. (8.23)

The combination of these two estimates gives (8.1).

9 Upper bound on the largest supercritical cluster

In this section, we prove the upper bound on the largest supercritical cluster stated in Theo-
rem 1.6(ii). For p ≤ pc, we used the variance bound Lemma 7.1. For p ≥ pc, we will use the
following alternate bound on the variance of Z≥s. For its statement, we define

χ<s(p) = Ep

[
|C(0)|I[|C(0)| < s]

]
. (9.1)

Lemma 9.1. Let s > 0 and p ∈ (0, 1). Then

Varp [Z≥s] ≤ (1 + p Ωs)V χ<s(p) ≤ 4s(1 + p Ωs)V M(p, s−1). (9.2)

Proof. We define the random variable Z<s = V − Z≥s =
∑

v∈V I[|C(v)| < s] and express the
variance as

Varp[Z≥s] = Varp[Z<s] =
∑

v,w,S,T

[
Pp(C(v) = S, C(w) = T )− Pp(C(v) = S)Pp(C(w) = T )

]
, (9.3)

where the sum is over connected sets S, T with |S| < s, |T | < s and v ∈ S, w ∈ T . Let dist(·, ·)
denote the graph distance on G. If dist(S, T ) > 1, the events {C(v) = S} and {C(w) = T}
are independent and so the difference is zero. If dist(S, T ) = 0, then S ∩ T 6= ∅, and the first
probability is zero unless S = T . The corresponding contribution from the first term is just

∑
S:|S|<s,
v,w∈S

Pp(C(v) = S) = V χ<s(p), (9.4)
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implying that the contribution from both terms can be bounded by (9.4).
We are left with the contribution of the terms (v, w, S, T ) with dist(S, T ) = 1. We need some

notation. Given a connected set S, let E(S) be the set of all edges with both endpoints in S, and
let ∂S be the set of edges with exactly one endpoint in S. Finally, let A(S) be the event that E(S)
contains a set O of occupied edges such that the graph (S,O) is connected. With this notation,
the event C(v) = S is just the intersection of the event A(S) with the event that all edges in ∂S
are vacant. Note also that the two events are independent, so that Pp(C(v) = S) is the product
Pp(A(S))(1− p)|∂S|.

If dist(S, T ) = 1, the events A(S), A(T ) and the event that the edges in ∂S ∪ ∂T are vacant
are independent. For these (S, T ), the difference in (9.3) can thus be rewritten as

Pp(C(v) = S, C(w) = T )− Pp(C(v) = S)Pp(C(w) = T )

= Pp(A(S))Pp(A(T ))
[
(1− p)|∂S∪∂T | − (1− p)|∂S|(1− p)|∂T |

]

= Pp(C(v) = S,C(w) = T )
[
1− (1− p)|∂S∩∂T |

]
. (9.5)

To continue, we use the inequality 1− (1− p)k ≤ pk to obtain

1− (1− p)|∂S∩∂T | ≤ p|∂S ∩ ∂T | = p
∑

x,y:dist(x,y)=1

I[x ∈ S]I[y ∈ T ]. (9.6)

Combining (9.6) with the identity (9.5), we now bound the contribution to (9.3) due to the terms
(v, w, S, T ) with dist(S, T ) = 1 by

p
∑

v,w,x,y
dist(x,y)=1

Pp

(
|C(v)| < s, x ∈ C(v), |C(w)| < s, y ∈ C(w), C(x) 6= C(y)

)

= p
∑

x,y,v,w
dist(x,y)=1

Pp

(
|C(x)| < s, v ∈ C(x), |C(y)| < s, w ∈ C(y), C(x) 6= C(y)

)

= p
∑
x,y

dist(x,y)=1

Ep

(
|C(x)| I[|C(x)| < s]|C(y)| I[|C(y)| < s, x 6↔ y]

)

≤ ps
∑
x,y

dist(x,y)=1

Ep

(
|C(x)| I[|C(x)| < s]

)

= psΩV χ<s(p). (9.7)

Combining this term with (9.4), we obtain the first bound of (9.2).
For the second bound of (9.2), it suffices to show that

χ<s(p) ≤ 4sM(p, s−1). (9.8)

For s ≥ 2, we bound χ(p, s−1) in (3.15) from below by restricting the sum over k to k < s. We
then use (1 − s−1)k ≥ (1 − s−1)s ≥ 1/4 to conclude that χ<s(p) ≤ 4χ(p, s−1). Combined with
(5.2), this gives (9.8) for s ≥ 2. If s ≤ 1, the left side of (9.8) is zero and the bound is trivial.
Finally, if 1 < s < 2 then the left side of (9.8) is at most 1, whereas it follows from the fact that
M(p, γ) ≥ Pp,γ(0 ∈ G) = γ that the right side of (9.8) is at least 4.
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Proof of Theorem 1.6(ii). Let p = pc + Ω−1ε. It suffices to prove that under the hypotheses of
Theorem 1.6 there are constants b11, b12 such that

Pp

(
|Cmax| ≥ [1 + (εV η)−1]V θα(p)

)
≤ b11

(εV η)3−2α
(9.9)

if max{b12V
−1/3, V −η} ≤ ε ≤ 1. (The proof actually applies for b12V

−1/3 ≤ ε ≤ 1, but the
result is not meaningful unless ε ≥ V −η.) To prove (9.9), we first note that V θα(p) ≥ Nα if

b10[εV
1/3]3−α ≥ 1, by (1.43). To satisfy b10[εV

1/3]3−α ≥ 1, we will take b12 ≥ b
−1/(3−α)
10 . Thus we

have

Pp

(
|Cmax| ≥ [1 + (εV η)−1]V θα(p)

)
= Pp

(
Z≥Nα ≥ |Cmax| ≥ [1 + (εV η)−1]V θα(p)

)

≤ Pp

(
|Z≥Nα − V θα(p)| ≥ (εV η)−1V θα(p)

)
. (9.10)

It therefore suffices to show that if max{b12V
−1/3, V −η} ≤ ε ≤ 1 then

Pp

(
|Z≥Nα − V θα(p)| ≥ (εV η)−1V θα(p)

)
≤ b11

(εV η)3−2α
. (9.11)

By the variance estimate (9.2), the triangle condition, and the fact that pΩ = pcΩ + ε ≤
1.1 + 1 = 2.1 if a0 is sufficiently small by (1.13), Var[Z≥s] ≤ 12s2V M(p, s−1) for s ≥ 1. Since
M(p, γ) ≤ √

12γ + 13ε by (5.13), it follows from the fact that N−1
α ≤ ε2 that

Var[Z≥Nα ] ≤ 200εN2
αV = 200

1

ε3−2α
V 1+2α/3. (9.12)

Therefore, by Chebyshev’s inequality and (1.43),

P
(
|Z≥Nα − V θα| ≥ (εV η)−1V θα

)
≤ (εV η)2 Var[Z≥Nα ]

V 2θ2
α

≤ 200

b2
10

1

ε3−2αV 1−2η−2α/3
. (9.13)

Since η = 3−2α
15−6α

, the important factor on the right side is equal to (εV η)−(3−2α). This gives (9.11)
and completes the proof.

A Appendix: Derivation of differential inequalities

A.1 Differential inequality for the susceptibility

In this section, we prove (3.1), which is restated here as Proposition A.1. We follow the original
proof of Aizenman and Newman [4], with a minor extension for the lower bound to deal with an
arbitrary transitive graph G. The proof also provides an instructive preliminary to the proof of
(5.16) in Appendix A.2.

Proposition A.1. For all p ∈ (0, 1),

[1− ∇̄p]Ωχ(p)2 ≤ dχ(p)

dp
≤ Ωχ(p)2. (A.1)
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Recall that E ◦F denotes the event that E and F occur disjointly. Given a bond configuration,
we say that a bond is pivotal for x ↔ y if x ↔ y in the possibly modified configuration in which
the bond is made occupied, whereas x is not connected to y in the possibly modified configuration
in which the bond is made vacant.

Proof of the upper bound in (A.1). By Russo’s formula (see [20, Theorem (2.25)]),

d

dp
τp(x, y) =

∑

{u,v}∈B
Pp({u, v} is pivotal for x ↔ y). (A.2)

Therefore, by the BK inequality,

d

dp
τp(x, y) ≤ ∑

(u,v)

Pp({x ↔ u} ◦ {v ↔ y}) ≤ ∑

(u,v)

τp(x, u)τp(v, y), (A.3)

where the sum over (u, v) is a sum over directed bonds. We then perform the sums over y, v, u (in
that order) and use transitivity to obtain the desired upper bound.

For the lower bound of (A.1), we will use the following lemma and definition. In the first lemma,
we use transitivity to give an alternate representation for

∑
v:{0,v}∈B∇p(0, v). This is related to

an issue raised by Schonmann [32] (see also [33]), who pointed out that the use of differential
inequalities plus the triangle condition to prove mean-field behavior on general infinite transitive
graphs can be accomplished under the additional assumption that the graph is unimodular, and
that it is an open problem to determine whether the assumption of unimodularity is essential.
Finite transitive graphs are always unimodular, so the issue raised in [32] is less relevant for our
purposes. In any case, we will bypass the issue altogether by applying the following lemma. For
its statement, we define

T1(z) =
∑

(u,v)

∑

y∈V
τp(z, u)τp(z, y)τp(y, v). (A.4)

The equality (A.5) of Lemma A.2 will be applied only in (A.20) and (A.53).

Lemma A.2. For each u, z ∈ V,

T1(z) =
∑

v:{u,v}∈B
∇p(u, v) ≤ Ω∇̄p. (A.5)

Proof. The inequality follows from the definition of ∇̄p in (1.12). To prove the equality, let

T2(u) =
∑

v:{u,v}∈B
∇p(u, v) =

∑

v:{u,v}∈B

∑

y,z∈V
τp(u, z)τp(z, y)τp(y, v). (A.6)

We first prove that T2(u) is independent of u; a similar proof applies for T1(z). By transitivity,
there is a graph automorphism ϕ = ϕu such that ϕ(u) = 0, where 0 is a fixed vertex. Since
τp(x, y) = τp(ϕ(x), ϕ(y)),

T2(u) =
∑

v:{u,v}∈B

∑

y,z∈V
τp(0, ϕ(z))τp(ϕ(z), ϕ(y))τp(ϕ(y), ϕ(v)). (A.7)
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Since ϕ is an automorphism, {u, v} ∈ B if and only if {ϕ(u), ϕ(v)} = {0, ϕ(v)} ∈ B. Similarly, as
x runs over all vertices, so does ϕ(x). Relabelling ϕ(y) to y, ϕ(v) to v, and ϕ(z) to z, we thus get

T2(u) =
∑

v:{0,v}∈B

∑

y,z∈V
τp(0, z)τp(z, y)τp(y, v) = T2(0). (A.8)

Since Ti(x) (i = 1, 2) is independent of x ∈ V, it is equal to the average of its sum over x ∈ V.
Since

∑
z∈V T1(z) =

∑
u∈V T2(u), this implies that T1(z) = T2(u) for all u, z ∈ V, which proves the

equality in (A.5).

Definition A.3. (a) Given a bond configuration, and A ⊂ V, we say x and y are connected in
A, and write x ↔ y in A, if there is an occupied path from x to y all of whose bonds have both
endpoints in A, or if x = y ∈ A. We define a restricted two-point function by

τA(x, y) = P(x ↔ y in V\A). (A.9)

(b) Given a bond configuration, and A ⊂ V, we say x and y are connected through A, if x ↔ y and
every occupied path connecting x to y has at least one bond with an endpoint in A. This event is

written as x
A↔ y.

(c) Given a bond configuration, and a bond b, we define C̃b(x) to be the set of vertices connected
to x, in the new configuration obtained by setting b to be vacant.

Proof of the lower bound in (A.1). We say that a directed bond (u, v) is pivotal for 0 ↔ x if {u, v}
is pivotal for 0 ↔ x and also u ∈ C̃(u,v)(0), v ∈ C̃(u,v)(x). By definition,

{(u, v) is pivotal for 0 ↔ x} (A.10)

= {0 ↔ u in C̃(u,v)(0)} ∩ {v ↔ x in V\C̃(u,v)(0)}.

Conditioning on C̃(u,v)(0), it follows from (A.10) that

Pp((u, v) is pivotal for 0 ↔ x)

=
∑

A:A30

Pp(C̃
(u,v)(0) = A, 0 ↔ u in A, v ↔ x in V\A)

=
∑

A:A30

Pp(C̃
(u,v)(0) = A, 0 ↔ u in A)Pp(v ↔ x in V\A)

=
∑

A:A30

Pp(C̃
(u,v)(0) = A, 0 ↔ u)τA

p (v, x), (A.11)

as we now explain. First, for the second equality, we use the fact that the events {C̃(u,v)(0) =
A} ∩ {0 ↔ u in A} and {v ↔ x in V\A} are independent, since the former depends only on the
status of bonds with at least one endpoint in A, while the latter depends only on bonds with both
endpoints in V \ A. Also, for the third equality, we have used the fact that if 0 ↔ u but it is not
the case that 0 ↔ u in A then v must be in A and hence τA

p (v, x) = 0. Therefore,

Pp((u, v) is pivotal for 0 ↔ x) = Ep

(
I[0 ↔ u] τ C̃(u,v)(0)(v, x)

)
. (A.12)
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Since
{v ↔ x in V \ A} = {v ↔ x} \ {v A↔ x}, (A.13)

the identity (A.12) can be rewritten as

Pp((u, v) is pivotal for 0 ↔ x) = τp(0, u)τp(v, x)− Ep

(
I[0 ↔ u]Pp(v ←C̃

(u,v)(0)−−−−−→ x)
)

. (A.14)

By the BK inequality, for A ⊂ V we have

Pp(v ←A−→ x) ≤ Pp

( ⋃

y∈A

{v ↔ y} ◦ {y ↔ x}
)

≤ ∑

y∈V
I[y ∈ A]Pp({v ↔ y} ◦ {y ↔ x})

≤ ∑

y∈V
I[y ∈ A]τp(v, y)τp(y, x). (A.15)

Therefore, for A = C̃(u,v)(0) ⊂ C(0), we have

Pp(v ←C̃
(u,v)(0)−−−−−→ x) ≤ ∑

y∈V
I[y ∈ C(0)]τp(v, y)τp(y, x). (A.16)

Substitution yields

Pp((u, v) is pivotal for 0 ↔ x) ≥ τp(0, u)τp(v, x)− ∑

y∈V
Pp(0 ↔ u ↔ y)τp(v, y)τp(y, x). (A.17)

The tree-graph bound [4] (which is an elementary consequence of the BK inequality) implies that

Pp(0 ↔ u, 0 ↔ y) ≤ ∑

z∈V
τp(0, z)τp(z, y)τp(z, u). (A.18)

Therefore,

Pp((u, v) is pivotal for 0 ↔ x) ≥ τp(0, u)τp(v, x) (A.19)

− ∑

y,z∈V
τp(0, z)τp(z, y)τp(z, u)τp(y, v)τp(y, x).

Recalling (A.2), and performing the sums over x and over directed bonds (u, v) leads to

dχ(p)

dp
≥ Ωχ(p)2 − χ(p)

∑

z∈V
τp(0, z)

∑

(u,v)

∑

y∈V
τp(z, y)τp(z, u)τp(y, v)

= Ωχ(p)2 − χ(p)
∑

z∈V
τp(0, z)T1(z)

≥ Ωχ(p)2[1− ∇̄p], (A.20)

by Lemma A.2.
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A.2 Differential inequality for the magnetization

In this section, we prove the differential inequality (5.16). Our method of proof for (5.16) is related
to, but simpler than, the method used in [7] to prove an analogous statement for percolation on
Zn. See [26, Section 3] for related results for Zn which are stronger but more difficult to prove. We
restate (5.16) as (A.21) in the following lemma. Note that, by (3.15), the factor (1− γ)∂M/∂γ on
the right side of (5.16) can be replaced by χ(p, γ). Recall that ∇max

p = supx,y∈V[∇p(x, y)− δx,y].

Lemma A.4. If 0 < p < 1 and 0 < γ < 1, then

M(p, γ) ≥ κ(p)(1− γ)M2(p, γ)
∂M(p, γ)

∂γ
(A.21)

where

κ(p) =

[(
Ω

2

)
p2(1− p)Ω−2

[
(1−∇max

p )2 −∇max
p

]
− p−∇max

p

]
pΩ. (A.22)

Before proving (A.21), we first discuss some preliminaries. Recall the use of the “green” set G
discussed in Section 3.5. Let {v ⇔ G} denote the event that there exist x, y ∈ G, with x 6= y, such
that there are disjoint connections v ↔ x and v ↔ y. Let F(u,v) denote the event that the bond
(u, v) is occupied and pivotal for the connection from 0 to G, with {v ⇔ G}. Let F = ∪(u,v)F(u,v),
and note that the union is disjoint. Since 0 ↔ G when F occurs,

M(p, γ) = Pp,γ(0 ↔ G) ≥ Pp,γ(F ) =
∑

(u,v)

Pp,γ(F(u,v)), (A.23)

and it suffices to prove that Pp,γ(F ) is bounded below by the right side of (A.21).
For x, y ∈ V, we define a “green-free” analogue of the two-point function by

τp,γ(x, y) = Pp,γ(x ↔ y, x ↔/ G), (A.24)

so that
χ(p, γ) =

∑

x∈V
τp,γ(0, x) (A.25)

and χ(p, 0) = χ(p). Given a subset A ⊂ V, we define τA
p,γ(x, y) to be the probability that (i) x ↔ y

in V\A, and (ii) x ↔/ G in V\A, which is to say that x ↔/ G after every bond with an endpoint
in A is made vacant. We write Ĩ{u,v}[E] to be the indicator that E occurs after {u, v} is made
vacant.

Lemma A.5.

Pp,γ(F(u,v)) = pEp,γ

[
τ C̃(u,v)(v)
p,γ (0, u)Ĩ{u,v}[v ⇔ G]

]
. (A.26)

Proof. We first observe that the event F(u,v) is given by

F(u,v) =
{
0 ↔ u in V\C̃(u,v)(v)

}
∩

{
0 ↔/ G in V\C̃(u,v)(v)

}

∩ {{u, v} occupied}
∩

{
v ⇔ G after {u, v} made vacant

}
. (A.27)
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The bond {u, v} has an endpoint in C̃(u,v)(v), and hence the event that {u, v} is occupied is
independent of the other events above. Therefore,

Pp,γ(F(u,v)) = p
∑

A:A3v

Ep,γ

[
I[C̃(u,v)(v) = A]Ĩ{u,v}[v ⇔ G] (A.28)

×I[(0 ↔ u and 0 ↔/ G) in V\A]
]
.

The two events in the first line depend only on bonds with an endpoint in A (but not on {u, v})
and vertices in A, while those in the second line depend only on bonds with no endpoint in A (so
not on {u, v}) and on vertices in V\A. Therefore,

Pp,γ(F(u,v)) = p
∑

A:A3v

Ep,γ

[
I[C̃(u,v)(v) = A]Ĩ{u,v}[v ⇔ G]

]
τA
p,γ(0, u), (A.29)

which implies the desired result.

Proof of Lemma A.4. We use the identities

τ C̃(u,v)(v)
p,γ (0, u) = τp,γ(0, u)−

(
τp,γ(0, u)− τ C̃(u,v)(v)

p,γ (0, u)
)

(A.30)

and
Ĩ{u,v}[v ⇔ G] = I[v ⇔ G]−

(
I[v ⇔ G]− Ĩ{u,v}[v ⇔ G]

)
. (A.31)

It follows from Lemma A.5 and (A.25) that

Pp,γ(F ) = pΩχ(p, γ)Pp,γ(0 ⇔ G) (A.32)

− p
∑

(u,v)

τp,γ(0, u)Ep,γ

[
I[v ⇔ G]− Ĩ{u,v}[v ⇔ G]

]

− p
∑

(u,v)

Ep,γ

[(
τp,γ(0, u)− τ C̃(u,v)(v)

p,γ (0, u)
)
Ĩ{u,v}[v ⇔ G]

]
.

We write (A.32) as X1 −X2 −X3, bound X1 from below, and bound X2 and X3 from above.

Lower bound on X1. We will prove that

Pp,γ(0 ⇔ G) ≥
(

Ω

2

)
p2(1− p)Ω−2M2(p, γ)

[
(1−∇max

p )2 −∇max
p

]
, (A.33)

which implies that

X1 ≥ pΩχ(p, γ)

(
Ω

2

)
p2(1− p)Ω−2M2(p, γ)

[
(1−∇max

p )2 −∇max
p

]
. (A.34)

Let Ee,f be the event that the bonds (0, e) and (0, f) are occupied, all other bonds incident on
0 are vacant, and that in the reduced graph G− = (V−,B−) obtained by deleting the origin and
each of the Ω bonds incident on 0 from G the following three events occur: e ↔ G, f ↔ G, and
C(e) ∩ C(f) = ∅. Let P−p,γ denote the joint bond/vertex measure on G−. We note that the event
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{0 ⇔ G} contains the event ∪e,fEe,f , where the union is over unordered pairs of neighbors e, f of
the origin, and the union is disjoint. Then

Pp,γ(0 ⇔ G) ≥ Pp,γ

(
∪e,f Ee,f

)
=

∑

e,f

Pp,γ(Ee,f )

= p2(1− p)Ω−2
∑

e,f

P−p,γ(e ↔ G, f ↔ G, C(e) ∩ C(f) = ∅). (A.35)

Let W = We,f denote the event whose probability appears on the right side of (A.35). Condi-
tioning on the set C(e) = A ⊂ V−, we see that

P−p,γ(W ) =
∑

A:A3e

P−p,γ(C(e) = A, e ↔ G, f ↔ G, C(e) ∩ C(f) = ∅). (A.36)

This can be rewritten as

P−p,γ(W ) =
∑

A:A3e

P−p,γ(C(e) = A, e ↔ G, f ↔ G in V− \ A), (A.37)

where {f ↔ G in V− \ A} is the event that there exists x ∈ G such that f ↔ x in V− \ A. The
intersection of the first two events on the right hand side of (A.37) is independent of the third
event, and hence

P−p,γ(W ) =
∑

A:A3e

P−p,γ(C(e) = A, e ↔ G) P−p,γ(f ↔ G in V− \ A). (A.38)

Let M−(x) = P−p,γ(x ↔ G), for x ∈ V−. Then, by the BK inequality and the fact that the two-point
function on G− is bounded above by the two-point function on G,

P−p,γ(f ↔ G in V− \ A) = M−(f)− P−p,γ(f
A↔ G) ≥ M−(f)− ∑

y∈A

τp,0(f, y)M−(y). (A.39)

By definition and the BK inequality,

M−(x) = M(p, γ)− Pp,γ(x ←{0}−−→ G) ≥ M(p, γ)(1− τp,0(0, x)) ≥ M(p, γ)(1−∇max
p ). (A.40)

In the above, we also used τp,0(0, x) ≤ ∇p(0, x), which follows from (1.1) (with u = v = y = 0).
It follows from (A.38)–(A.40) and the upper bound M−(x) ≤ M(p, γ) that

P−p,γ(W ) ≥ M(p, γ)
∑

A:A3e

P−p,γ(C(e) = A, e ↔ G)
[
(1−∇max

p )− ∑

y∈A

τp,0(f, y)
]

= M(p, γ)
[
M−(e)(1−∇max

p )− ∑

y∈V−
τp,0(f, y)P−p,γ(e ↔ y, e ↔ G)

]
. (A.41)

It is not difficult to show, using the BK inequality, that

P−p,γ(e ↔ y, e ↔ G) ≤ ∑

w∈V−
τp,0(e, w)τp,0(w, y)M−(w), (A.42)
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and hence, by (A.40)–(A.41),

P−p,γ(W ) ≥ M(p, γ)
[
M−(e)(1−∇max

p )− ∑

y,w∈V−
τp,0(f, y)τp,0(e, w)τp,0(w, y)M−(w)

]

≥ M2(p, γ)
[
(1−∇max

p )2 −∇max
p

]
. (A.43)

This completes the proof of (A.33), and hence of (A.34).

Upper bound on X2. This is the easiest term. By definition,

X2 = p
∑

(u,v)

τp,γ(0, u)Ep,γ

[
I[v ⇔ G]− Ĩ{u,v}[v ⇔ G]

]
. (A.44)

For the difference of indicators to be nonzero, the double connection from v to G must be realized
via the bond {u, v}, which therefore must be occupied. The difference of indicators is therefore
bounded above by the indicator that the events {v ↔ G}, {u ↔ G} and {{u, v} occupied} occur
disjointly. Thus, by the BK inequality, we have

Ep,γ

[
I[v ⇔ G]− Ĩ{u,v}[v ⇔ G]

]
≤ pM2(p, γ), (A.45)

and hence,
X2 ≤ p2ΩM2(p, γ)χ(p, γ). (A.46)

Upper bound on X3. By definition,

X3 = p
∑

(u,v)

Ep,γ

[(
τp,γ(0, u)− τ C̃(u,v)(v)

p,γ (0, u)
)
Ĩ{u,v}[v ⇔ G]

]
. (A.47)

The difference of two-point functions is the expectation of

I[0 ↔ u, 0 ↔/ G]− I[0 ↔ u in V\C̃(u,v)(v), 0 ↔/ G]

+ I[0 ↔ u in V\C̃(u,v)(v), 0 ↔/ G]− I[(0 ↔ u, 0 ↔/ G) in V\C̃(u,v)(v)]

≤ I[0 ←C̃
(u,v)(v)−−−−−→ u, 0 ↔/ G], (A.48)

since the second line is non-positive and the first line equals the third line. Since the indicator in
(A.47) is bounded above by I[v ⇔ G], it follows that

X3 ≤ p
∑

(u,v)

Ep,γ

[
Pp,γ(0 ←C̃

(u,v)(v)−−−−−→ u, 0 ↔/ G) I[v ⇔ G]
]
. (A.49)

By [26, Lemma 4.3] (which is proved by conditioning on G),

Pp,γ(0
A↔ u, 0 ↔/ G) ≤ ∑

y∈V
τp,γ(0, y)τp,0(y, u)I[y ∈ A]. (A.50)

The important point in (A.50) is that the condition 0 ↔/ G on the left side is retained in the factor
τp,γ(0, y) on the right side (but not in τp,0(y, u)). With (A.49), this gives

X3 ≤ p
∑

(u,v)

∑

y∈V
τp,γ(0, y)τp,0(y, u)Ep,γ

[
I[v ⇔ G]I[y ∈ C̃(u,v)(v)]

]
. (A.51)
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Since

I[v ⇔ G]I[y ∈ C̃(u,v)(v)] ≤ ∑

w∈V
I[{v ↔ w} ◦ {w ↔ y} ◦ {w ↔ G} ◦ {v ↔ G}], (A.52)

a further application of BK gives

X3 ≤ p
∑

y∈V
τp,γ(0, y)

∑

(u,v)

τp,0(y, u)
∑

w∈V
τp,0(v, w)τp,0(y, w)M2(p, γ)

= pM2(p, γ)χ(p, γ)T1(0) ≤ ∇max
p pΩM2(p, γ)χ(p, γ), (A.53)

where we used Lemma A.2 in the last step.
The combination of (A.34), (A.46) and (A.53) completes the proof of (A.21).

A.3 The differential inequality (8.14)

Let 0 ≤ p ≤ 1, 0 ≤ γ ≤ 1, and let ZG denote the number of vertices that are connected to a green
vertex. The differential inequality (8.14) states that

∂

∂p
Ep,γ(Z

2
G) ≤

3Ω

1− p

1− γ

γ
M(p, γ)Ep,γ(Z

2
G). (A.54)

Proof of (A.54). Let Ax,y be the event that x ↔ G and y ↔ G. Then

Ep,γ(Z
2
G) =

∑

x,y∈V
Pp,γ(Ax,y), (A.55)

and hence, by Russo’s formula,

∂

∂p
Ep,γ(Z

2
G) =

∑

x,y∈V

∑

{u,v}∈B
Pp,γ({u, v} is pivotal for Ax,y)

=
1

1− p

∑

x,y∈V

∑

{u,v}∈B
Pp,γ({u, v} is vacant and pivotal for Ax,y). (A.56)

If {u, v} is vacant and pivotal for Ax,y, then exactly one of the two endpoints of the edge {u, v}
is connected to a green vertex. Moreover, if one of the two endpoints of {u, v} is connected to a
green vertex, and the other is not, then the edge {u, v} is automatically vacant. As a consequence,

∂

∂p
Ep,γ(Z

2
G) =

1

1− p

∑

x,y∈V

∑

(u,v)

Pp,γ({{u, v} is pivotal for Ax,y} ∩ {u ↔ G} ∩ {v 6↔ G}), (A.57)

where the sum over (u, v) is a sum over directed edges. To analyze the probability in (A.57), we
distinguish two cases: either exactly one of the two vertices x and y is connected to a green vertex,
or neither of them is connected to a green vertex. It is not possible that both are connected to G,
because we are in a situation where {u, v} is vacant, and it cannot then also be pivotal for Ax,y.

Let us first estimate the contribution due to the event that neither x nor y is connected to a
green vertex. A moment’s reflection shows that this contribution can be rewritten as

Pp,γ({u ↔ G} ∩ {x ↔ y ↔ v 6↔ G}). (A.58)
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We will estimate (A.58) by applying the BK inequality, as generalized by van den Berg and
Fiebig [8] to cover intersections of increasing and decreasing events, to the joint distribution Pp,γ

(alternatively, the decoupling inequalities of [11] could be applied). With respect to Pp,γ, the event
{u ↔ G} is increasing, whereas the event {x ↔ y ↔ v 6↔ G} is the intersection of an increasing
and a decreasing event. In addition, these events must occur disjointly. Therefore, by the BK
inequality, (A.58) is bounded by

Pp,γ(u ↔ G)Pp,γ(x ↔ y ↔ v 6↔ G). (A.59)

Consider now the contribution from the event that x is connected to a green vertex, while y is
not. This contribution can be rewritten as

Pp,γ({u ↔ G} ∩ {x ↔ G} ∩ {y ↔ v 6↔ G}), (A.60)

which we bound using the BK inequality by

Pp,γ({u ↔ G} ∩ {x ↔ G})Pp,γ(y ↔ v 6↔ G). (A.61)

Interchanging the role of x and y, we obtain a similar bound on the contribution of the term with
y ↔ G and x 6↔ G.

Inserting these three bounds into (A.57), and recalling (A.25), we get

∂

∂p
Ep,γ(Z

2
G) ≤

1

1− p

∑

x,y∈V

∑

(u,v)

Pp,γ(u ↔ G)Pp,γ(x ↔ y ↔ v 6↔ G)

+
2

1− p

∑

x,y∈V

∑

(u,v)

Pp,γ({u ↔ G} ∩ {x ↔ G})Pp,γ(y ↔ v 6↔ G)

=
V Ω

1− p
M(p, γ)Ep,γ[|C(0)|2I(0 6↔ G)] +

2Ω

1− p
χ(p, γ)Ep,γ(Z

2
G). (A.62)

To complete the proof of (A.54), we estimate (A.62) by using Lemmas 8.2 and 8.1 for the first
term, and using the lower bound of (5.2) for the second term.
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