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Abstract: We study the multi-period pricing problem of a service firm facing time-varying capacity levels. In our model, cus-

tomers are assumed to be fully strategic with respect to their purchasing decisions, and heterogeneous with respect to their valua-

tions, and arrival-departure periods. The firm’s objective is to set a sequence of prices that maximizes its revenue while guaranteeing

service to all paying customers. We provide a dynamic programming based algorithm that computes the optimal sequence of prices

for this problem in polynomial-time. We show that due to the presence of strategic customers, available service capacity at a time

period may bind the price offered at another time period. This phenomenon leads the firm to utilize the same price in multiple

periods, in effect limiting the number of different prices that the service firm utilizes in optimal price policies. Also, when customers

become more strategic (patient for service), the firm offers higher prices. This may lead to the under-utilization of capacity, lower

revenues, and reduced customer welfare. We observe that the firm can combat this problem if it has an ability, beyond posted prices,

to direct customers to different service periods.

1. Introduction
Dynamic pricing is one of the key tools available to a service firm trying to match time-varying supply with

time-varying demand. It is, however, a delicate tool to use in the presence of customers who strategically

time their purchases. As customers change the timing of their purchases, not only might the firm lose

revenue, but it might also cause its service capacity to be strained in periods where a low price is offered.

We consider a general formulation of a multi-period pricing problem of a service firm trying to maximize

its revenue while selling service to strategic customers who arrive and depart over time. We assume the firm

is constrained by its time-varying service capacity level and that it wishes to provide service guarantees to

its customers. More specifically, the firm announces a sequence of prices in advance; each customer chooses

the period with the lowest price between her arrival and departure. The sequence of prices is chosen in order

to maximize the revenue of the firm while guaranteeing that each customer who is willing to pay the price at

a given period will obtain service. Our main contributions are to provide algorithms that compute the firm’s

optimal pricing policy and to characterize the properties of such optimal policy.

Service guarantees are an important contract feature that are often used when the customers themselves

are businesses that rely on the service they purchase to run their own operations. An example of a setting
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with the aforementioned properties comes from the cloud computing market where firms sell computational

services to their customers.6

In this market, despite the fact that demand for service varies quite significantly over time, customers

typically demand reliability from their providers, in the sense that they should be able to purchase service

whenever they need it and rationing is not tolerated. For instance, consider the case of Domino’s Pizza,

which is a client of Microsoft’s Windows Azure cloud computing platform. As explained by Domino’s

director of eCommerce: “We have daily peaks for dinner rush, with Friday night being the biggest. Super

Bowl, however, has a peak 50 percent larger than our busiest Friday night. Windows Azure allows me to

focus on customer facing functionality, and not have to worry about whether or not I have enough hosting

capacity to support it” (Vitek (2009)). For Domino’s and many other companies, the key managerial benefit

of purchasing cloud computing services is that it permits them to completely ignore the hosting capacity

needs of their online businesses. This is only the case because the cloud computing providers go to great

lengths to ensure that their service is always available and, therefore, companies who rely on them need not

worry about rationing risk.7

The clients of cloud computing services are also highly heterogenous with respect to their willingness-

to-wait for service. While some companies utilize cloud computing to run on-demand services and web-

sites, and thus always need immediate service, others use the cloud to run simulations or solve large-scale

optimization problems such as the ones that arise in financial analysis, weather forecasting and genome

sequencing. Such clients will typically display more strategic behavior in their purchasing of cloud services

and wait for lower prices before purchasing service (e.g., see DNAnexus (2011)).

Currently, most cloud computing services are sold via static pricing, or via a combination of long-term

contracts and static pricing (e.g., Amazon EC2 Pricing (2012), Windows Azure Pricing (2012)). More

specifically, the customers can purchase computation capacity (starting at around 10 cents per hour) in a pay-

as-you-go model where the per-hour price is constant over time; this hourly rate is reduced for customers

who pay in advance, via yearly contracts, to reserve capacity. The largest players in this market have mostly

shied away from selling their higher quality-level services via dynamic pricing;8 this could potentially be

attributed to the difficulty of maintaining service level guarantees while customers are strategically timing

their purchases. Our work provides the firm with techniques for using dynamic pricing in such a context

and, therefore, giving them a tool to better manage their resources and revenues.

6 Cloud computing is a large and quickly growing business. The combined revenues of this market were estimated to be more than
$22 billion in 2010 and are expected to reach $55 billion by 2014 – see Lohr (2011).
7 “Organizations worry about whether utility computing services will have adequate availability, and this makes some wary of
cloud computing. . . . Google Search has a reputation for being highly available, to the point that even a small disruption is picked
up by major news sources. Users expect similar availability from new services...”; see Armbrust et al. (2010).
8 The main exception would be Amazon’s spot market (Amazon EC2 Pricing (2012)) which is a secondary market run by Amazon
to sell the excess capacity of its main platform. While the spot-market prices fluctuate over time, the exact manner in which these
prices are determined is not publicly available; see Agmon et al. (2012).
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There are other examples of service firms that need to set profit-maximizing prices while guaranteeing

service. For instance, the increasingly popular Uber online taxi service offers a flat pricing scheme on most

days of the year, but utilizes dynamic pricing in high demand days – see Bilton (2012). As explained by its

CEO, Uber is “aiming to provide a reliable ride to anybody who needs one, no matter how crazy demand is

or what is going on in the city” – see Kalanick (2011). Uber is able to provide such a service guarantee by,

in times of higher demand, conserving resources by charging higher prices.

Another interesting application of our work is in the context of electricity markets. As smart meters (see

FERC (2008)) are beginning to be widely deployed, allowing customers to immediately respond to price

changes, the techniques we develop in this paper will become increasingly useful since electricity markets

feature many of the elements of our model: capacity, demand and prices are time-varying and rationing of

service is highly undesirable.

In the industries discussed above, it is mainly the firm’s responsibility to set prices which ensure that all

service requests can be accommodated with a limited service capacity. This is in contrast to settings such as

traditional retailing, where customers are exposed to rationing risk. In a traditional retail setting, strategic

customers consider the risk of a stock-out and this incentivizes them to purchase the good earlier. This

rationing risk mitigates the effect of strategic customer behavior on the firm’s ability to set its own prices.

In our setting, the firm’s need to offer service guarantees places the entire burden of matching supply and

demand over time on the firm. The intuition is that the firm should increase its prices when demand is high

(or capacity is low) to shift some of the demand to the time periods with enough capacity. This is similar to

the pricing scheme used by the major cellphone carriers which, in order to decongest their networks during

business hours, often charge lower prices for making calls on nights and weekends (e.g., see AT&T (2012)).

The dynamic pricing tools we propose hold the promise of helping firms in such industries improve their

resource utilization by better matching supply and demand over time.

1.1. Our Framework and Contributions

We consider a monopolist that offers service to customers over a finite horizon. The firm faces a (possibly

time-varying) capacity constraint at each time period. The firm’s objective is to implement a posted pricing

scheme in order to maximize its revenue. At time zero, the monopolist declares – and commits to – a

sequence of prices for its service, one for each time period. Given those pre-announced prices, customers

decide whether and when to purchase service. The firm needs to solve the constrained optimization problem

of determining the prices that maximize revenue while still fulfilling all customer purchase requests.

Each customer is assumed to be infinitesimal and demands an (also infinitesimal) single unit of service.

The valuation of a given customer for a unit of service is drawn from a known distribution. She is also

associated with an arrival and a departure time. The arrival time corresponds to the time she enters the

system and the departure time represents her deadline for obtaining service. All customers are fully strategic
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about whether and when they purchase service from the firm. That is, each customer either refuses to buy

service (if her valuation is below any of the prices offered while she is present) or buys service at the period

when she is offered at the lowest price among all the periods in which she is present – if two periods have

the same low price, she prefers the earlier one.

First, we consider a deterministic baseline model where the monopolist knows the total mass of customers

that arrive at each given time period, as well as their departure periods. The assumption of deterministic

demand is justified when the number of customers is large and fairly predictable, which is often the case in

the market for cloud computing. This modeling choice allows us to study the impact of strategic customers,

and time-varying demand and capacity on the optimal sequence of prices but it deliberately removes the

element of uncertainty from the model. The demand being deterministic also implies the optimality of using

a sequence of pre-announced prices. We show later in the paper that many of the insights obtained in this

simple environment naturally extend to general settings that allow for uncertainty in the model.

Interestingly, even the solution of this baseline model is far from trivial. We show that due to the presence

of strategic customers, the set of feasible price vectors is neither convex nor closed. This means no off-

the-shelf software can be used to solve this problem efficiently. Despite these challenges, we are able to

establish that the firm’s price optimization problem is a tractable one and provide an efficient polynomial-

time algorithm for computing the optimal pricing policy. This result relies on two crucial ideas: the set of

prices that the firm needs to consider is not too large; and prices can be combined into a policy via dynamic

programming because strategic customers never wait past a low price to purchase service at a future price

that is higher.

We extend our results to models where the firm does not know its service capacity levels or the number

of arriving customers. We do so in two distinct ways. First, we consider a robust optimization framework

(cf. Ben-Tal and Nemirovski (2002), Bertsimas and Thiele (2006)), where there is uncertainty about the

firm’s capacity and the size of the customer population at any given period, and the firm only knows that

these parameters belong to given sets. In this setting, the firm tries to maximize its worst-case revenues,

while ensuring that the capacity constraints are not violated for any realization of demand and capacities.

Second, we study the model in a stochastic setting where the seller knows the distribution of the uncertain

parameters and is able to obtain additional capacity at a cost; the goal is to determine a sequence of (pre-

announced) prices that maximizes the expected profit. Additionally, this model allows for production costs

and different value distributions for customers with differing patience levels. We establish that the insights

from our baseline model carry on to these general environments. That is, using a dynamic programming

approach similar to our baseline model, we are able to provide algorithms that compute the (near) optimal

pricing policy in polynomial-time.

We also consider a related setting, where customers do not simply choose the earliest time period with

lowest price to receive service, but rather the firm chooses how customers should break ties between time
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periods with equal prices. In this setting, customers are guaranteed to receive service at the lowest price

available to them, but the firm can more efficiently use its capacity by scheduling customers appropriately.

Interestingly, our algorithms can be modified to account for this additional flexibility, and solve the optimal

pricing problem of the firm.

Finally, we conduct numerical studies using our algorithms, and obtain further insights on the effect of

strategic customers and service guarantees on both the firm and its customers. We show that even in settings

with high volatility in service capacity and demand, the number of price levels that optimal pricing policy

employs is small. For instance, in a 24-period model, the optimal price sequence includes 4 different price

levels on average. This shows that even in complex multi-period settings, the customers’ strategic behavior

severely constrains the firms choice of price sequence. We also observe that if patient customers can wait

longer for service, both the revenue of the firm and the aggregate customer welfare may decrease. This

occurs because the firm is forced to use higher prices to maintain its service guarantees, and consequently

the service capacity is underutilized. Thus we conclude that, in a phenomenon similar to Braess’s para-

dox (Başar and Olsder (1999)), when customers have additional freedom in choosing the time period they

purchase service, the overall performance of the system may decrease.

1.2. Related Work

In this section, we present a brief overview of the literature on pricing mechanisms in the presence of

customers who strategically time their purchases and discuss how the results in the literature relate to ours.

There is also an extensive literature on dynamic pricing with myopic customers (see, for example, Lazear

(1986), Wang (1993), Gallego and Ryzin (1994), Feng and Gallego (1995), Bitran and Mondschein (1997),

Federgruen and Heching (1999)). We do not provide a summary of this line of literature here, but refer the

reader to excellent surveys by Talluri and Ryzin (2004), Bitran and Caldentey (2003), Chan et al. (2004),

Shen and Su (2007), and Aviv et al. (2009).

The study of monopoly pricing in the presence of strategic customers was pioneered by Coase (1972).

Coase conjectured that in a setting in which a monopolist sells a durable good to patient customers, if the

monopolist cannot commit to a sequence of posted prices, then the prices would converge to the production

cost. Later, Stokey (1979, 1981), Gul et al. (1986) and Besanko and Winston (1990) showed that a decreas-

ing sequence of prices is optimal for selling durable goods when customers face the trade-off of consuming

right away versus the possibility of purchasing at the lower prices in the future. They observe that customers

with high valuations buy in earlier periods and pay higher prices compared to the low valuation customers.

In the context of revenue management, Aviv and Pazgal (2008) study a model where a monopolist sells

multiple items over a finite time horizon to strategic customers who arrive over time. The authors consider

two classes of pricing strategies: contingent posted-pricing, where the firm’s prices may depend on the

remaining inventory, and pre-announced posted pricing. They observe that commitment (pre-announced
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discount) can benefit the seller when customers are strategic. Also, ignoring the strategic customer behavior

can lead to significant loss of revenue. Elmaghraby et al. (2008) and Dasu and Tong (2010) extend the

analysis to a setting where the seller can reduce the prices multiple times over the time horizon. Other papers

that consider commitment to a pricing policy include Arnold and Lippman (2001), Levin et al. (2010) and

Cachon and Feldman (2010). These works mainly consider markdown pricing. Su (2007) shows that if the

customers are heterogeneous regarding their time sensitivity, then the optimal sequence of posted prices

might also be increasing.

In the aforementioned works, the service provider uses the customers’ fear of rationing to extract more

revenue from strategic customers (cf. Liu and van Ryzin (2008)). In contrast, in our model the firm ensures

the customers does face such risks and provides service guarantees. Su and Zhang (2009) consider the issue

of rationing in the presence of strategic customers and find that sellers have an incentive to over-insure

consumers against the risk of stockouts, thus showing that providing service guarantees can be in the firm’s

interest.

Another related paper to ours is the one by Ahn et al. (2007), which considers joint pricing and production

decisions. Unlike us, they assume that customers are myopic with respect to prices but, similarly to our

model, they assume customers stay in the system for a number of periods unless they make a purchase.

Interestingly, their analysis also relies on the notion that a low price effectively separates past and future

through what they call regeneration points.

An altogether different approach to this problem is the one taken by the dynamic mechanism design

literature. There, the firm offers a direct mechanism that allocates its service as a function of customers

reports of their private valuations, entry and departure periods. See Bergemann and Said (2011) for a survey.

The paper closest to this one within this literature is Pai and Vohra (2013), where strategic customers arrive

and depart over time, but the allocation problem they study is quite dissimilar to the one we consider.

The model we consider here differs from many papers in the literature in at least three key aspects: in

our model, the firm guarantees service to all paying customers and, therefore, the customers do not face

rationing risk. Second, instead of having a fixed inventory at time 0, in our model, the firm has a time-

varying service capacity, which is non-storable. Hence, strategic behavior of the customers has the potential

to increase the utilization of the firm’s capacity. Finally, in the previous work, the customers are either

present from the beginning of the time horizon, or arrive over time but remain until the end of the horizon

(or they make a purchase). In our model, buyers arrive and depart the system over time.

2. The Baseline Model
In this section, we formulate the firm’s revenue maximization problem, which will be studied in the sub-

sequent sections. The firm sets a vector of prices over a finite horizon t = 1, .., T . The prices, denoted by
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p = (p1, ..., pT ), are announced upfront, one price for each period t.9 Customers arrive and depart over time

and are infinitesimal. We denote the population of customers that arrive at period i and depart at period j

by ai,j . With slight abuse of notation, we also represent the mass of the population that arrives at period i

and departs at period j by ai,j .

Each customer wants one unit of service10 from which she obtains a (non-negative) value, and customers

are strategic with respect to the timing of their purchases. Given the vector of prices p, a customer from

population ai,j , with value v for the service, purchases the service at a time period with the lowest price

between times i and j, if her value is larger than the lowest price, i.e., if v ≥ min`:i≤`≤j{p`}. If there is

more than one period with the lowest price in {i, · · · , j}, the customer chooses the earliest period (with the

minimum price) to obtain the service.11

Given a price vector p, we can assign to each population ai,j a service period, denoted by πi,j(p). This

period has the lowest price among periods in {i, · · · , j} and is the earliest one (in {i, · · · , j}) with this price.

Each member of population ai,j considers purchasing service at time πi,j(p) and will purchase service if her

value exceeds the price at that period. We call the mass of customers that, given prices p, consider obtaining

service at period t as the potential demand at time t, and denote it by ρ̄t(p). Formally, the potential demand

is given by

ρ̄t(p) =
∑

i,j:1≤i≤t≤j≤T

ai,j1{t= πi,j(p)}, (1)

where 1 is an indicator function.

Each customer assigns a non-negative value for obtaining service. The fraction of customers with value

below v is given by F (v). For simplicity of presentation, we assume that F is a continuous function and

v ∈ [0,1] for all customers. We also assume that customer valuations are independent of their arrival and

departure periods, an assumption that we relax in Section 7. Hence, given price vector p, the demand at

time t, denoted by D̄t(p), is equal to D̄t(p) = (1−F (pt))ρ̄t(p).

The firm’s objective is to maximize its revenue, which is given by
∑T

t=1 ptD̄t(p). However, the firm is

constrained by a service capacity level of ct, for each t ∈ {1, ..., T}. The firm provides service guarantees

to its customers, so it must set prices that ensure that the demand D̄t(p) does not violate the capacity ct at

any period t. Thus, the firm’s decision problem is given by:

sup
p≥0

T∑
t=1

ptD̄t(p)

s.t. D̄t(p)≤ ct, for all t∈ {1, ..., T},
(OPT-1)

9 For instance, the horizon of the problem can be chosen as a day, with periods corresponding to different hours during the day,
in order to capture the problem of the firm selecting prices for its next business day. Such an approach would be reasonable when
deciding day-ahead prices for cloud computing services or electricity markets.
10 A customer that wants multiple units of service could be considered as multiple customers in our model.
11 We relax this assumption in Section 8.
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where p≥ 0 is a short-hand notation for pt ≥ 0 for all t ∈ {1, ..., T}. The above problem searches for the

supremum of the objective function instead of the maximum, since the maximum of OPT-1 does not always

exist. We demonstrate the non-existence of an optimal solution in Section 3, where we also present our

technique for handling this issue.

If there were no capacity constraints, the firm could use a single price p at all periods to maximize its

revenue12, and this would result in a revenue equal to p(1−F (p))
∑

i≤j ai,j . Since
∑

i≤j ai,j is a constant,

we call p(1− F (p)) the uncapacitated revenue function. We make the following regularity assumption to

simplify our analysis.

ASSUMPTION 1. The uncapacitated revenue function p(1−F (p)) is unimodal. That is, there exists some

monopoly price pM such that p(1−F (p)) is increasing for all p < pM and decreasing for all p > pM .

Note that this assumption implies that pM maximizes p(1−F (p)), and it is satisfied for a wide range of

distributions, including the uniform, normal, log-normal, and exponential distributions.

We now show, by the means of an example, that the set of feasible prices of OPT-1 is non-convex.

EXAMPLE 1. Let the time horizon be T = 3 and assume that a single unit-mass of customers with uni-

form valuations in [0,1], arrive at period 1 and depart at period 3. Assume that c2 = 0, and c1, c3 = 1. Then

the price vectors (0,0.1,1) and (1,0.1,0) are both feasible. However, the average of these two price vectors,

(0.5,0.1,0.5), is infeasible since all customers with valuation above 0.1 seek service at period 2, violating

the service capacity c2 = 0. Therefore, the set of feasible prices of OPT-1 is non-convex.

The above example illustrates that OPT-1 is a non-convex optimization problem, and we cannot hope to

solve it using off-the-shelf optimization tools. We show in Section 5 that despite being non-convex, there

exists a polynomial-time algorithm that solves this optimization problem. The construction of this algorithm

relies on the structural properties of this pricing problem that are explored in Sections 3 and 4.

3. Optimizing over Prices and Rankings
In this section, we show that there does not always exist a feasible solution achieving the supremum in

the firm’s optimization problem. To address this issue, we construct a closely related optimization problem

where the firm tries to maximize not only over prices, but also over rankings of the prices. We show that

this optimization problem always admits an optimal solution which can be used to obtain feasible solutions

arbitrarily close to the supremum of the original problem.

We start with an example that shows that the supremum of OPT-1 may not be achieved by a feasible

price vector. The main idea is that since the customers always seek the lowest price available, the potential

demand function ρ̄t is a discontinuous function of p; thus, the feasible set of OPT-1 is open.

12 Since customer valuations are independent of arrival and departure periods, it can be seen from OPT-1 that if there are no capacity
constraints, setting pt = argmaxp p(1−F (p)) for all t maximizes revenue.
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EXAMPLE 2. Consider a two-period model with customer valuations drawn uniformly from [0,1], capac-

ity levels c1 = 1
2

and c2 =∞, and customer populations a1,1 = a1,2 = 1 (and a2,2 = 0). Observe that solutions

of the form (p1, p2) = ( 1
2
, 1
2
− ε) are feasible for any ε > 0: the members of population a1,1 with value above

1
2

obtain service at time 1 and the members of population a1,2 with value above 1
2
− ε are served at time

2. Hence, (p1, p2) = ( 1
2
, 1
2
− ε) yields the revenue of 1

2
× 1

2
+ ( 1

2
− ε)× ( 1

2
+ ε) = 1

2
− ε2. The revenue is

decreasing in ε and as ε tends to 0 the revenue approaches 1
2
. The uncapacitated problem provides an upper

bound on the revenue obtained, which is 1
2
. Therefore, the supremum of OPT-1 is equal to 1

2
. However,

(p1, p2) = ( 1
2
, 1
2
) is not a feasible solution, because under this price vector, both populations will choose the

first period for service, and this violates the capacity constraints. Therefore, the feasible set of price vectors

is open and the supremum of OPT-1 is not achieved by a feasible price vector.

The non-existence of an optimal solution can be addressed by finding (feasible) solutions that are arbi-

trarily close to the (infeasible) supremum. In the remainder of this section, we introduce the notion of

rankings and an alternative optimization formulation which allow us to obtain such solutions for OPT-1 (or

the optimal solution itself in instances where the optimum is feasible).

We refer to permutations of {1, · · · , T} as rankings. We use the notation Rt to denote the rank of time

period t under ranking R. We say that a ranking R is consistent with a price vector p if periods with lower

rank have lower prices. More precisely, R is consistent with p if for all t and t′, Rt < Rt′ implies that

pt ≤ pt′ .

We define the customer-preferred ranking, denoted by RC(p), as a ranking consistent with p, such that

when there are multiple periods with the same price, the earlier periods are ranked lower. Namely, if pt = p′t

and t < t′ then Rt <Rt′ . It can be seen from the definition of service period πi,j(p) (introduced in Section

2) that in OPT-1 for a given price vector p, each population ai,j chooses the time period between i and j,

with the lowest customer-preferred ranking to (potentially) receive service. Hence potential demand ρ̄t can

be expressed as a function of this ranking.

More formally, for any period t and ranking of prices R we define the R-induced potential demand,

denoted by ρt(R), as:

ρt(R) =
∑
i≤j

ai,j1

{
Rt = min

k:i≤k≤j
{Rk}

}
. (2)

Similarly, the R-induced demand, denoted by Dt(pt,R), is defined as

Dt(pt,R) = (1−F (pt))ρt(R). (3)

It follows from (1), (2) and the definition of customer-preferred ranking that for any price vector p and

customer-preferred ranking RC(p), we have ρt(RC(p)) = ρ̄t(p) and Dt(pt,R
C(p)) = D̄t(p). That is, it is

possible to express demand (D̄t) in terms of the R-induced demand function (Dt) and customer-preferred

ranking (RC).
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Suppose that in OPT-1 the firm could select not only the vector of prices p, but also any ranking R

consistent with p (potentially different than the customer-preferred ranking), and customers decided when

to obtain service according to this ranking, i.e., each customer chooses the period with the lowest ranking

between her arrival and departure time. Then, the demand at any period is given by Dt(pt,R), and the

corresponding revenue maximization problem can be formulated as:

max
p≥0,R∈P(T )

T∑
t=1

ptDt(pt,R)

s.t. Dt(pt,R)≤ ct for all t∈ {1, ..., T}

Rt <Rt′⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T},

(OPT-2)

where P(T ) is the set of all possible rankings of {1, ..., T}. Despite the fact that this problem is different

from OPT-1, the solutions of these problems are closely related, as we explain next.

Since Dt(pt,R
C(p)) = D̄t(p), it follows that any feasible solution p of OPT-1 corresponds to a feasible

solution of OPT-2 given by (p,RC(p)), and these solutions lead to the same objective values. Additionally,

it can be seen from (1) and (2) that for a given price vector p, and any ranking R consistent with p the

(potential) demand levels in OPT-1 and OPT-2 are equal except for periods where the price is equal to the

price offered at another period. Intuitively, unlike OPT-1, in OPT-2 the firm can choose how the customers

collectively break ties between time periods with equal price, by choosing the ranking R properly, and this

may lead to a difference in demand levels only at such time periods. These observations can be used to show

that OPT-2 always has an optimal solution, and this solution can be used to construct a solution of OPT-1

that is arbitrarily close to the supremum.

LEMMA 1. The following claims hold:

1. The problem OPT-2 admits an optimal solution (p?,R?).

2. Let (p?,R?) be an optimal solution of OPT-2. For any ε > 0, the price vector p? + εR? is a feasible

solution of OPT-1 and the revenue it obtains converges to the supremum of OPT-1 as ε tends to 0.

3. If p is an optimal solution of OPT-1, then (p,RC(p)) is an optimal solution of OPT-2.

The proof of this lemma can be found in the online appendix. The idea behind this lemma is that the

projection of the set of feasible solutions of OPT-2 onto the set of prices is the closure of the feasible

set of OPT-1. Therefore, the optimal prices generated by OPT-2 can be perturbed in a way that maintains

the ranking of prices, leading to a solution of OPT-1 that is arbitrarily close to the supremum. In the rest

of the paper, we focus on the solution of OPT-2, keeping in mind that an optimal solution (or a solution

arbitrarily close to optimal, if optimal solution does not exist) of OPT-1 with (almost) the same prices can

be constructed using this solution.
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4. Structure of the Optimal Prices
In this section, we explore the structure of optimal prices in OPT-2. We first show that at all periods the

monopolist has incentive to keep the prices at least as high as the monopoly price pM . Then, we use this

observation to study the optimality conditions in OPT-2. Exploiting these conditions, we construct a set of

prices which contains all the possible candidate optimal prices. We show that the cardinality of this set is

polynomial in the time horizon T , a result we later use in Section 5 to obtain a polynomial time algorithm

to solve OPT-2. Proofs of the results presented in this section can be found in the online appendix.

To gain some intuition, we first consider the optimal solution in a single period setting. By Assumption 1,

choosing any price p < pM is suboptimal, and the firm has incentive to increase its price to pM . If setting the

price equal to pM violates the capacity constraints, then the firm increases its price to the minimum price

that respects the capacity constraints. Since customers’ values are bounded by 1, such a price exists. Thus,

it follows that an optimal price in [pM ,1] can be found. The following proposition shows that this intuition

extends to multi-period settings.

PROPOSITION 1. There exists an optimal solution (p,R) of OPT-2 such that pt ≥ pM for all t.

To prove this result, we assume that a solution where pt < pM for some t, is given, and we raise prices that

are below the monopoly price pM in a way that maintains the ranking of the prices. This ensures that as the

prices increase to pM , the revenue increases, while the demand decreases. Thus, it is possible to obtain a

feasible solution that (weakly) improves revenues and satisfies pt ≥ pM .

Note that conditioned on prices being above the monopoly price pM , by the assumption of unimodality of

the uncapacitated revenue function, the incentives of the firm and the customers are aligned: both the firm

and the customers prefer lower prices over higher ones. The firm never raises prices to obtain more revenue,

only to satisfy capacity constraints.

We next provide a further characterization of the prices that are used at an optimal solution of OPT-2.

This characterization significantly narrows down the set of prices that needs to be considered to find an

optimal solution.

PROPOSITION 2. There exists an optimal solution (p,R) of the optimization problem OPT-2 such

that for each period t one of the following three statements is true: pt = pM , pt = 1, or pt =

pt̂ for some t̂, such that ct̂ =Dt̂(pt̂,R) and pt̂ ∈ [pM ,1].

The proof of this proposition follows by showing that unless the conditions of the proposition hold, the

monopolist can modify the prices in a way that increases its profits, while maintaining the feasibility of

the capacity constraints.13 The third condition of the proposition suggests that the price at time t is either

13 We note that if we strengthen Assumption 1 to impose concavity on the uncapacitated revenue function, then the proposition can
be proved using the KKT conditions.
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such that the capacity constraint at time t is tight, or this price is equal to the price offered at another time

period, and the capacity constraint at this other time period is tight. Hence, due to the presence of strategic

customers, capacity constraints at one period may bind the prices at another period, but this requires the

prices to be identical at these two periods.

This proposition implies that for an optimal solution (p,R) of OPT-2, each entry of the price vector p

either belongs to {pM ,1} or is above pM and satisfies the equation

ct̂ =Dt̂(p,R) = ρt̂(R)(1−F (p)), (4)

for some time period t̂. However, to characterize the set of all prices that may appear at an optimal solution,

we still need to consider all possible rankings. Although there are T ! possible rankings R, there are a

significantly smaller number of prices that satisfy equations of the form (4). In order to formalize this idea,

we introduce the notion of attraction range, which is a representation of all the populations that choose the

same period for service.

DEFINITION 1 (ATTRACTION RANGE). For a given consistent price-ranking pair (p,R) the attraction

range of a time period k is defined as the largest interval {t, ..., t} ⊆ {1, ..., T} containing k such that

Rk = min`∈{t,...,t}R`.

Assume that the attraction range of time period k for a consistent price-ranking pair (p,R) is {t, ..., t}.

Since customers choose the time period with the lowest ranking available to them when purchasing service,

customers who arrive at the system between periods t and k, and who can wait until time period k, but

not beyond time period t are exactly the ones who will seek service at period k. Thus, the attraction range

concept can be used to identify customers who are “attracted” to a particular time period for receiving

service (see Example 3).

EXAMPLE 3 (ATTRACTION RANGE). Consider a problem instance with 6 time periods. Assume that a

consistent price-ranking pair (p,R) for this problem is given, and the prices at different time periods are

as in Figure 1. Since prices at all time periods are different, there is a unique ranking R consistent with

these prices. The attraction range of time period 4 in this example is {2, ...,5}.Thus, customers who arrive

between time periods 2 and 4 (inclusive) and who cannot wait beyond time period 5 are the ones who seek

service at period 4.

This example suggests that attraction ranges can be used to determineR-induced potential demand ρt(R).

Assume that (p,R) is a consistent price-ranking pair, and consider the attraction range of some time period

k ∈ {1, . . . , T}, denoted by {t(k,R), ..., t(k,R)}. As discussed earlier, customers who arrive at the system

between t(k,R) and k (inclusive), and who can wait until time k but not beyond time t(k,R) are the only

ones who can request service at time k. Thus, we obtain that ρk(R) =
∑k

i=t(k,R)

∑t(k,R)

j=k aij. From this

equation it follows that ρk(R) can immediately be obtained by specifying the attraction range of time period
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Periods	
  

Prices	
  

1	
   2	
   3	
   4	
   5	
   6	
  

2	
   4	
   5	
  

Figure 1 Attraction range of period 4 is {2, ...,5} in this 6 period problem instance.

k. By considering all the possible attraction ranges {t, . . . , t} corresponding to time period k we conclude

that for any ranking R, we have ρk(R) ∈
{∑k

i=t

∑t

j=k aij

∣∣∣ t≤ k≤ t} . Using this observation, it follows

that any p satisfying (4) for some R and ρk(R) belongs to the set

Lk ,

{
max

{
pM ,F

−1

(
1−

(
ck∑k

i=t

∑t

j=k aij

))}∣∣∣∣∣ ck ≤
k∑
i=t

t∑
j=k

aij, and t≤ k≤ t

}
. (5)

Here the condition ck ≤
∑k

i=t

∑t

j=k aij is present since F−1 is defined over the domain [0,1]. The maxi-

mum with pM is taken to make sure that all the prices in Lk are at least equal to pM , which follows from

Proposition 2. By construction each element of Lk corresponds to an attraction range {t, . . . , t}. Since there

are O(T 2) attraction ranges (there are O(T ) values t and t can take), the cardinality of Lk is O(T 2). Thus,

we reach the following characterization of optimal prices, which is stated without proof as it immediately

follows from Propositions 1 and 2, and the definition of Lk given in (5).

PROPOSITION 3. Let L be defined as L , (∪Tk=1Lk) ∪ {pM} ∪ {1}. There exists an optimal solution

(p,R) of OPT-2, such that pt ∈L for all t∈ {1, ..., T}. Moreover, the cardinality of L is O(T 3).

The above proposition implies that without actually solving OPT-2, it is possible to characterize a superset

of the prices that will be used at an optimal solution. Moreover, this set has polynomially-many elements,

and it is sufficient for the monopolist to consider these prices, when making its pricing decisions. However,

finding the vector of optimal prices could still be a computationally intractable problem even if L has small

cardinality. In the next section, we show that this is not case, and we develop a polynomial-time algorithm

that determines the optimal sequence of prices.

5. A Polynomial Time Algorithm
In this section, we use the characterization of the optimal prices obtained in Section 4 to design a polynomial

time algorithm for computing the optimal sequence of prices.
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As shown in Proposition 3, an optimal solution of OPT-2 can be obtained by restricting attention to set of

prices L given in Proposition 3. Thus, an optimal solution to OPT-2 can be obtained by restricting attention

to prices in L, and solving the following optimization problem:

max
p∈LT ,R∈P(T )

T∑
t=1

ptDt(pt,R)

s.t. Dt(pt,R)≤ ct for all t∈ {1, ..., T}

Rt <Rt′⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T}.

(OPT-3)

We next show that it is possible to find an optimal solution of OPT-3 by recursively solving problems that

are essentially smaller instances of itself.

Consider an optimal solution of OPT-3, denoted by (p?,R?). Suppose time period k has the lowest

ranking, i.e., R?
k = 1. In this case the attraction range of k is {1, ..., T}, and ρk(R?) =

∑k

i=1

∑T

j=k aij .

Hence, all customers who are present in the system at time k will seek service at time k. This implies that

only populations ak1,k2 , 1≤ k1 ≤ k2 < k can receive service at time periods {1, . . . , k− 1} (similarly, only

populations ak1,k2 , k < k1 ≤ k2 ≤ T can receive service at time periods {k+ 1, . . . , T}). Therefore, if the

monopolist knows p?k and that R?
k = 1, it can solve for optimal prices at other time periods, by solving two

separate subproblems for time periods {1, . . . , k− 1} and {k+ 1, . . . , T}: maximize the revenue obtained

from time periods {1, . . . , k − 1} assuming only populations ak1,k2 are present (with 1 ≤ k1 ≤ k2 < k),

and similarly for time periods {k + 1, . . . , T}. Note that in the solution of the subproblems we need to

impose the condition that prices are weakly larger than p?k, as otherwise p?l < p?k for some l, and we obtain

a contradiction to R?
k = 1.

The above observation suggests that given the time period k with the lowest ranking, the pricing problem

can be decomposed into two smaller pricing problems, where the prices that can be offered are lower

bounded by the price offered at k. We next exploit this observation and obtain a dynamic programming

algorithm for the solution of OPT-3.

Let ω(i, j, p) denote the maximum revenue obtained from an instance of OPT-3 assuming (i) ak1,k2 = 0

unless i < k1 ≤ k2 < j, (ii) restricting prices to be weakly larger than p. That is,

ω(i, j, p) = max
p∈LT ,R∈P(T )

j−1∑
t=i+1

ptD
ij
t (pt,R)

s.t. Dij
t (pt,R)≤ ct for all t∈ {1, ..., T}

Rt <Rt′⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T}

pt ≥ p for all t∈ {1, ..., T}

(6)

whereDij
t is defined similarly to (3), and denotes the demand at time t, assuming ak1,k2 = 0 unless i < k1 ≤

k2 < j. Observe that the optimal objective value of OPT-3 is equal to ω(0, T + 1,0).
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For i+ 1> j−1, we assume ω(i, j, p) equals to 0. On the other hand, for any i, j such that i+ 1≤ j−1,

we have

ω(i, j, p) = max
k∈{i+1,...,j−1}

{
max

p∈L:p≥p

{
ω(i, k, p) + γijk (p) +ω(k, j, p)

}}
, (7)

where γijk (p) is given by:

γijk (p) =


(

k∑
l=i+1

j−1∑
m=k

alm

)
(1−F (p))p if

(∑k

l=i+1

∑j−1
m=k alm

)
(1−F (p))≤ ck

−∞ otherwise.

(8)

In order to see why the recursion in (7) holds, consider a solution of (6), and assume that in this solution k is

the time period in {i+1, . . . , j−1} with the lowest ranking, and pk ≥ p is the corresponding price. Then all

populations which are present in the system at k receive service at this time period. The total mass of these

populations is
∑k

l=i+1

∑j−1
m=k alm, since ak1,k2 = 0 unless i < k1 ≤ k2 < j as can be seen from the definition

of ω(i, j, p). Since at the optimal solution of (6) the capacity constraints are satisfied, the revenue obtained

from time period k is given by γijk (pk). Since k has the lowest ranking among {i + 1, . . . , j − 1}, only

populations ak1,k2 such that i < k1 ≤ k2 <k can receive service before time k, and the prices offered at those

time periods should be weakly larger than pk. It follows from the definition of ω that the maximum revenue

that can be obtained from these populations (with prices weakly larger than pk) is given by ω(i, k, pk).

Similarly, it follows that the maximum revenue that can be obtained from time periods after k equals to

ω(k, j, pk). Thus, we conclude that ω(i, j, p) = ω(i, k, pk) + γijk (pk) + ω(k, j, pk). The recursion in (7)

follows since it searches for time period k with the lowest ranking and the corresponding price pk that

maximizes the objective of (6). Note that since γijk (p) = −∞ when a capacity constraint is violated, the

solution obtained by solving this recursion also satisfies the capacity constraints.

Theorem 1 shows that a solution of OPT-2, or equivalently a solution of the alternative formulation

in OPT-3, can be obtained by solving for prices using the dynamic programming recursion in (7) and

constructing a ranking vector consistent with these prices.

THEOREM 1. The optimal solution of OPT-2 can be computed in time O(T 6).

The above theorem, which is proved in the appendix, suggests that firms that provide service guarantees can

effectively implement optimal pricing policies by solving OPT-2. In the subsequent sections, we show that

this result extends to other settings, where there is uncertainty about the problem parameters, and the firm

has more general objectives.

6. A Robust Optimization Formulation
The baseline model we considered in previous sections assumes that both demand and service capacity

available over the planning horizon can be fully anticipated. This assumption is motivated by our online
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services application, where the planning horizon is typically counted in hours or, at most, days. Over the

next two sections, we show how to solve the firm’s problem when this assumption is not valid, by either

taking a robust or a stochastic view of the demand or capacity uncertainty. In particular, in this section

we introduce a robust optimization formulation of the firm’s pricing problem. We show that when there

is uncertainty about either the service capacity levels or the size of the customer population, a variant of

the algorithm of Section 5 can be used to obtain a solution that maximizes revenue, while maintaining

feasibility for all possible values of uncertain parameters. Furthermore, we can bound the firm’s worst-case

revenue loss as a function of the uncertainty in the problem parameters. The proofs of this section can be

found in the online appendix.

Suppose the firm does not know its service capacity level ct at a given period, but only knows that it

belongs to an interval Ct = [cLt , c
U
t ]. Similarly, the firm does not know the mass of customers in population

ai,j , but instead it knows only that ai,j ∈ Ai,j = [aLi,j, a
U
i,j]. We refer to a collection of population sizes

A= {ai,j}1≤i,j≤T as a population matrix, and represent the set of all possible capacity levels by C =
∏
t Ct

and the set of all possible population matrices byA=
∏
i,jAi,j . In order to make dependence of the demand

(defined in Eq. (3)) on population size explicit, in this section we denote the demand at period t, when

population matrix is given by A∈A, and the firm uses price pt, and ranking R ∈P(T ), by Dt(pt,R,A).

The problem of selecting prices and ranking that are feasible for all capacity levels in C and population

matrices in A, and that maximize the worst case revenue, can be formulated as follows:

max
p≥0,R∈P(T ),M

M

s.t. M ≤
T∑
t=1

ptDt(pt,R,A) for all A∈A

Dt(pt,R,A)≤ ct for all t, ct ∈ Ct and A∈A

Rt <Rt′⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T},

(OPT-4)

Our next result shows that this robust optimization problem is tractable.

PROPOSITION 4. The optimal solution of OPT-4 can be computed in time O(T 6).

The optimization problem in OPT-4 is not a special case of OPT-2 because it uses the population matrix

AL when computing revenue and a different population matrix AU when computing feasibility. However,

with minor modifications, the structural insights and the polynomial-time algorithm from Section 5 still

apply, leading to the result in Proposition 4.

The robust optimization formulation finds a conservative solution that is feasible for all possible values of

uncertain parameters. We next quantify the potential revenue loss due to the uncertainty, when the solution

obtained from this formulation is used for pricing. Assume that a solution of OPT-4 is obtained using

uncertainty sets C and A. Let V ROB(C,A,c,A) denote the revenue the firm achieves, using this solution,
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when realized parameter values are c ∈ C and A ∈A. We denote the revenues that could be obtained if we

knew with certainty c and A by V (c,A). The following proposition bounds the decrease in the revenues

when there is uncertainty, and the solution of OPT-4 is used to obtain a robust pricing rule.

PROPOSITION 5. Suppose cUt ≤ (1 + θ)cLt for all t ∈ {1, ..., T} and aUi,j ≤ (1 + θ)aLi,j for all i, j ∈

{1, ..., T}. Then, supc∈C,A∈A (V (c,A)−V ROB(C,A,c,A))≤ 3θ
∑

i,j a
U
i,j.

This proposition implies that when the uncertainty in the problem parameters is small (i.e., when θ is

small), the revenue loss is also small, provided that a solution of OPT-4 is used for pricing. The proposition

also suggests that if a nominal version of the problem with parameters (cNOM ,ANOM) is known, and the

realized parameters are between 1− ε and 1 + ε times the nominal ones (i.e., 1 + θ = 1 + ε/(1− ε)), then

the maximum revenue loss due to uncertainty is equal to 6ε(1+ε)

1−ε

∑
i,j a

NOM
i,j .

7. A General Framework and An Approximation Scheme
In this section, we generalize our baseline model by incorporating random customer arrivals and capacity

levels, production costs, and customer valuations that are dependent on arrival and departure periods to the

model. Namely, the distribution of the size and valuations of each population is known in advance and the

firm determines a sequence of (pre-announced) prices in order to maximize its expected profit. To satisfy

service guarantee, we allow for soft capacity constraints in the sense that the firm can exceed the allowable

capacity by paying a penalty or purchasing more capacity.

At this level of generality, the characterization of the set of prices in an optimal solution, presented in

Section 4, do not hold. However, we can extend our algorithm to obtain a fully polynomial time approxima-

tion scheme (FPTAS) for the general model. An FPTAS is an approximation algorithm that for any ε > 0,

obtains a solution within a factor of 1−ε of the optimal solution and is polynomial in the size of the problem

and in 1
ε
. Therefore, using an FPTAS, one can obtain a solution arbitrarily close to the optimal.

Intuitively, this problem is still tractable since, similar to our baseline model, if a time instant has the

lowest price in the horizon, then all customers who are present in the system at this time instant prefer

receiving service there. Consequently, our main divide and conquer approach is applicable and we can

reformulate the problem, as a dynamic programming problem following the approach in Section 5. In this

section, we formally explain this idea. The proofs of our results are presented in the online appendix.

We start by introducing an abstract problem that is the focus of this section:

max
p∈[0,1]T ,R∈P(T )

T∑
t=1

gt(pt,R)

s.t. ht(pt,R)≤ 0 for all t∈ {1, ..., T}

Rt <Rt′⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T}.

(OPT-5)

We make the following assumption through out this section:
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ASSUMPTION 2. For any ranking R and period t, the functions gt(·,R) and ht(·,R) satisfy:

1. Each customer prefers the time period with the lowest rank (among those during which she is present)

to (potentially) receive service. Hence, the dependence of functions gt :R×P(T )→R and ht :R×P(T )→

R on R is through the attraction range of time period t. That is, there exist functions ĝ, ĥ such that

gt(pt,R) = ĝt(pt, bt(R), et(R)) and ht(pt,R) = ĥt(pt, bt(R), et(R)) (9)

where {bt(R), ..., et(R)}, is the attraction range of time period t, when ranking R is chosen.

2. ht(pt,R) is decreasing in pt and gt(pt,R) is Lipschitz continuous in pt with parameter lt.

The first part of the assumption implies that the demand for service at period t and, therefore, the profit

earned at period t, depend only on the price pt and the attraction range generated by the ranking of prices

R. That is, if we modify price pt+1 while leaving the ranking of prices R intact, thus leaving the attraction

range intact, this change in the price vector p will have no effect on the demand at period t. This excludes

customer discounting, for example, but is a generalization of the customer behavior model assumed in

earlier sections. The second part of the assumption just implies that demand in a given period decreases

continuously in that period’s price if we maintain a constant ranking of prices. Observe that OPT-2 is a

special case of OPT-5, when gt(pt,R) = ptDt(pt,R) and ht(pt,R) =Dt(pt,R)−ct, assuming that demand

Dt(pt,R) is Lipschitz continuous in pt, for a fixed ranking R.

For a constant ε∈ (0,1), consider the set of prices Pε = {kε|k ∈Z+, kε≤ 1}, and assume that we seek a

solution to OPT-5 by restricting attention to the prices that belong to this set, i.e.,

max
p∈PTε ,R∈P(T )

T∑
t=1

gt(pt,R)

s.t. ht(pt,R)≤ 0 for all t∈ {1, ..., T}

Rt <Rt′⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T}.

(OPT-6)

Note that any feasible solution of OPT-6 is feasible in OPT-5. We next show that for small ε the optimal

objective values of these problems are also close. Hence, an optimal solution of OPT-6 can be used to

provide a near-optimal solution of OPT-5.

LEMMA 2. Let the optimal solutions of OPT-5 and OPT-6 have objective values v and vε respectively.

Then, vε ≥ v− ε
∑T

t=1 lt.

We next show that a modified version of the algorithm in Section 5 can be used to solve OPT-6. Our

approach is again based on obtaining a solution by recursively solving smaller instances of the problem.

For this purpose, we first define ω̂(i, j, p) to be the maximum utility that can be obtained assuming only

populations ak1,k2 , i < k1 ≤ k2 < j, are present, and the prices that can be used at periods {t|i < t < j} are

(weakly) larger than p. It can be seen that the optimal value of OPT-6 is equal to ω̂(0, T + 1,0).
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We set ω̂(i, j, p) = 0, for i+1> j−1. Using the same argument given in Section 5 to justify the recursion

in (7), it follows that for i+ 1≤ j− 1, the following dynamic programming recursion holds:

ω̂(i, j, p) = max
k∈{i+1,...,j−1}

{
max

p∈Pε:p≥p

{
ω̂(i, k, p) + γ̂ijk (p) + ω̂(k, j, p)

}}
, (10)

where γ̂ijk (p) denotes the utility obtained at time k with price p, from all populations ak1,k2 that can receive

service at this period and that satisfy i < k1 ≤ k2 < j. That is γ̂ijk (p) = ĝk(p, i, j), if ĥk(p, i, j) ≤ 0 and

γ̂ijk (p) =−∞ otherwise.

The intuition behind (10) is similar to the intuition of (7): in order to find ω̂(i, j, p), we search for the

time period with the lowest rank (maximization over k in (10)), and we search for the best possible price

for this time period (maximization over p). Since all populations which are present at the time period with

the lowest ranking (say k) receive service at this time period, the payoff obtained from this time period

can be given by γ̂ijk (p). We then solve for prices of subproblems for time periods {i+ 1, . . . , k − 1} and

{k+ 1, . . . , j − 1}. Since the time period with the lowest ranking also has the lowest price, we impose the

prices for these subproblems to be weakly larger than p. Thus, the payoffs of the subproblems are given by

ω̂(i, k, p) and ω̂(k, j, p). Hence, we obtain the recursion in (10) for computing optimal prices in OPT-6.

In Lemma 3, we use this dynamic program to construct optimal prices and ranking for the solution

of OPT-6, and characterize the computational complexity of the solution. Note that since we are dealing

with general functions gt and ht, our result depends on the computational complexity of evaluating these

functions.

LEMMA 3. Assume that for any given t, p,R, computation of gt(p,R) and ht(p,R) takes O(s(T )) time.

An optimal solution of OPT-6 can be found in O
(
T3s(T )

ε2

)
time.

Lemmas 2 and 3 imply that an approximate solution to OPT-5 can be found in polynomial time provided

that gt(p,R) and ht(p,R) can be evaluated in polynomial time.

THEOREM 2. Assume that for any given t, p,R, computation of gt(p,R) and ht(p,R) takes O(s(T ))

time. An ε-optimal solution of OPT-5 can be found in O
(
T3s(T )

ε2

)
time.

The proof immediately follows from Lemmas 2 and 3 and is omitted. In many of the relevant cases (such

as revenue maximization subject to capacity constraints as introduced in Sections 2 and 3), for given prices

and rankings, evaluating constraints and the objective function (ht and gt) can be completed in O(1) time.

In such settings Theorem 2 implies that an approximate solution can be obtained in O(T 3/ε2) time.

We conclude this section by showing that this general framework allows us to find approximately optimal

prices in polynomial time, for problem instances that involve random arrivals and capacity levels, production

costs, and a richer class of customer valuations.
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Correlated valuations: Here, we relax the assumption made before that the customers’ valuations are

independent of their arrival and departure periods. Let Fi,j(v) represent the fraction of the ai,j population

that values service at most v. We assume that all valuations are in [0,1] and that Fi,j is differentiable, but

we no longer suppose that Assumption 1 holds, i.e., the corresponding uncapacitated revenue function need

not be single peaked. Customer demand at period t as a function of price pt and the ranking of prices R is

now given by

Dt(pt,R) =
∑
i≤j

ai,j(1−Fi,j(pt))1{Rt ≤Rk for all i≤ k≤ j}.

By choosing gt(pt,R) = ptDt(pt,R) and ht(pt,R) = Dt(pt,R)− ct, the corresponding revenue max-

imization problem is an instance of OPT-5. Note that for a fixed R, denoting fi,j(p) = dFi,j(p)/dp, and

assuming fi,j is bounded by li,j we conclude∣∣∣∣∂Dt(pt,R)

∂pt

∣∣∣∣=∑
i≤j

ai,jfi,j(pt)1{Rt ≤Rk for all i≤ k≤ j} ≤
∑
i≤j

ai,jli,j.

Thus, it follows that when fi,j is bounded for all i, j, Dt(·,R) is Lipschitz continuous. This implies that

gt(·,R) is also Lipschitz continuous, for all t and R. Moreover, ht is decreasing in pt (since demand is

decreasing in pt). Furthermore, for any t, p,R evaluating Dt(pt,R), and in turn gt(p,R) and ht(p,R) takes

O(T 2) time. Thus, Theorem 2 applies and we conclude that the approximate revenue maximization problem

can be solved in O
(
T5

ε2

)
.

Production costs and soft capacity constraints: We also incorporate productions costs into the model.

We assume that it costs the firm µt(d) to provide service to mass d of customers at period t. We make the

following regularity assumption on the production costs:

ASSUMPTION 3. Assume that for any period t, the production cost µt is a non-negative, non-decreasing,

λ-Lipschitz continuous function.

Besides the cost of producing the service to be delivered, the function µt can also capture a soft capacity

constraint: if c̄t represents a capacity level above which any unit produced costs µ̄, then we can capture this

by setting µt(d) = max{0, µ̄(d− c̄t)}. Even with soft-capacity constraints, we still assume that the firm

provides service guarantees. Whenever the firm is incapable of providing the purchased service itself, it

contracts service delivery out to a third-party with a unit cost of µ̄.

By letting gt(pt,R) = ptDt(pt,R)−µt(Dt(pt,R)) and ht(pt,R) =Dt(pt,R)−ct, we obtain an instance

of OPT-5. From Assumption 3, it follows that gt(pt,R) is Lipschitz continuous in pt. Since demand is

decreasing with price, we observe that ht(pt,R) decreases with price. Thus, Theorem 2 applies and since

Dt(p,R) (and hence gt(pt,R), ht(pt,R)) can be evaluated in polynomial time for any given p and R, it

follows that an approximate solution of the problems with production costs and soft capacity constraints

can be obtained in polynomial time.
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Stochastic arrival and capacity processes: Assume that population sizes {ai,j}i,j and capacities {ct}t

are random variables with known distributions. Let E[ai,j] = âi,j and E[ct] = ĉt. In this setting, if monop-

olist wants to guarantee that the total service request does not exceed the capacity for any realization of the

parameters, it can use the robust optimization framework in Section 6. On the other hand, if the firm has

the capability to contract service delivery out whenever the capacity is exceeded (hence it has soft capacity

constraints), it can solve the following expected revenue maximization problem:

max
p∈Pε,R∈P(T )

T∑
t=1

E[ptDt(pt,R)−µt(Dt(pt,R))]

s.t. Rt <Rt′⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T},
(11)

By choosing ht(pt,R) = 0 and gt(pt,R) = E[ptDt(pt,R) − µt(Dt(pt,R))] we obtain an instance of

OPT-5. Note that if µt is Lipschitz continuous, then so is gt(pt,R) =E[ptDt(pt,R)−µt(Dt(pt,R))]. Thus,

under Assumption 3, provided that the expectation in E[ptDt(pt,R)− µt(Dt(pt,R))] can be evaluated in

polynomial time, (11) can be solved using the dynamic programming recursion in (10) in polynomial time.

8. Multi-Period Pricing with Customer Scheduling
In the earlier sections, we studied the pricing problem of a firm in a setting where the customers choose the

earliest time instant with the lowest price to receive service. Consider an example where all customers arrive

at the initial period and can wait until the end of the horizon to receive service but service capacity is spread

over many periods. For any pricing rule, in this example all customers receive service at the same time

instant (with the lowest price). However, this results in inefficient use of capacity and reduced revenues.

Motivated by this example, in this section, we consider the pricing problem, in a setting where the firm

can choose how customers should break ties between time instants with equal prices. That is, the customers

still receive service at a time instant with the lowest price, but if there are multiple such time instants,

the firm schedules how customers should be served. Observe that in the example described above, such a

scheduling of customers would avoid the inefficiency created by serving all customers at the same period

(and wasting the capacity in the remaining periods).

Note that it may not always be in the power of the firm to schedule its customers as described above,

since at the least this requires knowledge of the arrival and departure times (or deadlines) of customers,

which is not always available. However, in this section we establish that if the firm has the necessary means

to schedule its customers, then it can decide on the optimal prices and schedule, by following a dynamic

programming approach similar to the one discussed in Section 5.

In this setting, the firm’s optimization problem can be formulated as follows:
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max
p∈PT ,x

T∑
t=1

pt

( ∑
i,j:i≤t≤j

xti,j

)
s.t.

∑
i,j:i≤t≤j

xti,j ≤ ct for all t∈ {1, ..., T}

xti,jpt = xti,j min
k:i≤k≤j

{pk} for all t∈ {1, ..., T}∑
t:i≤t≤j,F (pt)<1

1(
1−F (pt)

)xti,j = aij for all i, j ∈ {1, ..., T}

(OPT-7)

Here, xti,j corresponds to the mass of customers that belong to population ai,j and receive service at time

t and P is the set of prices that can be used by the firm. For simplicity, in this section we assume that P

is a finite set. The first constraint suggests that the capacity constraint is satisfied at all time instants, and

the second one ensures that if a fraction of population ai,j is scheduled to receive service at time t (i.e.,

xti,j > 0), then the price at time t should be equal to the minimum price offered from time i up to (and

including) time j. The final constraint guarantees that all customers that belong to some population ai,j and

have valuation larger than the lowest price between i and j, will receive service.

It’s possible to interpret our paper as two-stage game where the firm moves first and selected a sequence of

prices and the consumers respond in the second stage. This two stage game might have multiple equilibria.

One equilibrium is the one we call the baseline model – consumers break ties in favor of buying service

early. Another potential equilibrium is the one where consumers break ties in favor of buying at the most

favorable period for the firm. The second equilibrium is the one studied in this section.

Observe that our baseline model can be viewed as a version of OPT-7 where the firm is restricted to breaking

ties by assigning the customers to the earliest time instant with the lowest price. Hence, if the firm has the

ability to break the ties favorably, it may obtain a higher revenue. We next show that in this case the optimal

pricing policy (i.e., the solution of OPT-7) can be obtained by using a dynamic programming approach that

generalizes the one used for the solution of our baseline model. In particular, given a set of prices that can

be used by the seller P, this algorithm finds the optimal solution of OPT-7 in time polynomial in T and size

of P.

To compute the optimal revenue in the OPT-7, similar to Section 5, define ω̂(i, j, p) as the maximum

revenue can be obtained from all populations arriving between periods i and j, using prices weakly greater

than p, with the boundary condition that all customers who can wait until or after time j receive service at a

later time instant. In our original model, we recursively calculated ω(i, j, p) by finding a period k where it

gets the lowest price and highest ranking (see Section 5). In the new model, since a population can be split

into different periods, instead of finding a single period that takes the lowest price, we find a set of such

periods. Before presenting the algorithm, we need a couple of definitions.

Let S(i, j) be the set of all feasible price vectors for subproblem (i, j). Namely, S(i, j) is the set of all

feasible solutions of Problem OPT-7 where the mass of all populations except those arriving between time
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i and j are assumed to be zero. Define S(i, j, p, k) be the set of price vectors in S(i, j) such that all prices

are (weakly) greater than p and k is the latest period that has price p (i.e., all periods between time k and

j have a price (strictly) larger than p). If no such feasible set exists, then let S(i, j, p, k) = ∅. Additionally,

we define L̂(i, j, p, k) = {t|∃S ∈ S(i, j, p, k) and pt(S) = p}, where pt(S) denotes the price at time t in

price vector S. This definition suggests that L̂(i, j, p, k) is the set of all periods that take price p for some

price vector in S(i, j, p, k). Using these definitions, we first provide a characterization of the optimal pricing

policy, when we restrict attention to price vectors in S(i, j, p, k).

LEMMA 4. Suppose S(i, j, p, k) is non-empty and p is (weakly) larger than the monopoly price pM .

Then, there exists a price vector S? ∈ S(i, j, p, k) such that pt(S?) = p for all t ∈ L̂(i, j, p, k) and S?

maximizes the revenue (objective of OPT-7) among all the price vectors S(i, j, p, k).

Now, suppose S(i, j, p, k) is non-empty, and S? ∈ S(i, j, p, k). Observe that if we remove periods in

L̂(i, j, p, k) from the set of periods between i and j we will end up with some intervals (consecutive time

periods belong to the same interval and we may have intervals with only one period). We denote the `-th

such interval by [I`i,j,p,k,0, I
`
i,j,p,k,1], and note that there are fewer than (j− i) intervals. We also observe that

in S? only populations that arrive after time (Ii,j,p,k,0− 1) and leave before period
(
I`i,j,p,k,1 + 1

)
receive

service at the periods in [I`i,j,p,k,0, I
`
i,j,p,k,1] because the price at periods I`i,j,p,k,0− 1 and I`i,j,p,k,1 + 1 is equal

to p. Now we can state the recursion for computing ω̂(i, j, p):

ω̂(i, j, p) = max
k:i<k<j

max
p:p≥p

{
γ̂ijk (p) +

∑
`

ω̂
(
I`i,j,p,k,0− 1, I`i,j,p,k,1 + 1, p

)}
(12)

where, similar to Section 5, γ̂ is given by:

γ̂ijk (p) =


 ∑
l,m:∃t∈L̂(i,j,p,k),l≤t≤m

alm

 (1−F (p))p If L̂(i, j, p, k) 6= ∅

−∞ If L̂(i, j, p, k) = ∅

(13)

Namely, γ̂ijk (p) denotes revenue obtained from the periods in L̂(i, j, p, k), by setting their prices equal to

p≥ p, assuming only the populations between periods i and j are present in the system. Following the same

argument in Section 5, and using Lemma 4, it is easy to show that the recursion calculates the optimal value

for ω̂(i, j, p). Note that (13) suggests that if L̂(i, j, p, k) can be found in polynomial time, then γ̂ can be

computed efficiently. Our next result, which is proved in the online appendix, shows that this is the case.

LEMMA 5. Set L̂(i, j, p, k) can be found in polynomial time.

Observe that we have O(T 2|P|) subproblems ω̂(i, j, p). Therefore, by the lemma given above, and the

recursion in (12), we immediately obtain the following theorem.

THEOREM 3. The optimal solution of OPT-7 can be found in polynomial time.
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9. Numerical Insights
In this section, we consider generic instances of the firm’s pricing problem and obtain qualitative insights

about the optimal pricing scheme introduced in this paper. We first investigate the effect of available capac-

ity on the optimal prices used by the firm, and establish that the prices closely track the capacities, e.g.,

decreasing capacities induce increasing prices and vice versa. Then, we focus on how patience level of play-

ers affect the outcome, and show that as customers become more patient, the firm offers higher prices that

leads to under utilization of capacity, and lowered revenues and customer welfare. In addition, we observe

that when customers are patient the firm ends up using only a few different prices, thereby considerably

decreasing the complexity of the pricing policy. Finally, we compare the pricing schemes we introduce in

this paper, with static pricing that is commonly employed in practice, and establish that it is possible to sig-

nificantly improve the revenues using our algorithms. We conclude by testing the run time of our algorithms,

and showing that for realistic scenarios optimal prices can be computed only in a few minutes.

Unless noted otherwise, we will always consider problem instances with 36 time periods, where we focus

on the middle 24 periods to avoid potential boundary effects.14 We let customer valuations be uniformly dis-

tributed between 0 and 1. We assume that there are two types of populations arriving at each time period: (i)

impatient (or myopic) customers (who are only interested in purchasing service at the period they arrived),

(ii) strategic (or s-patient) customers, who are willing to wait up to s periods to purchase service. This is

captured by setting all ai,j equal to 0 unless j = i (myopic customers) or j = i+s (strategic ones). For each

i, ai,i is generated at random from a uniform distribution between 0 and m1, while ai,i+s is generated from

a uniform distribution between 0 and m2, where m1 and m2 are simulation parameters.

9.1. Effects of Capacity Constraints

We first consider different capacity regimes and try to understand their impact on pricing rules. We consider

capacity vectors that satisfy one of the following cases: (case 1) ct = 1 for all t ∈ {1, . . . , T}, i.e., constant

capacity; (case 2) ct = 1.25− 0.5(t− 1)/(T − 1) for all t ∈ {1, . . . , T}, i.e., capacity decreases from 1.25

to 0.75 over the horizon; (case 3) ct = 0.75 + 0.5(t − 1)/(T − 1) for all t ∈ {1, . . . , T}, i.e., capacity

increases from 0.75 to 1.25 over the horizon; (case 4) ct = 1.25− (t− 1)/(T − 1) for all t ≤ T/2, and

ct = 0.75 + (t − 1 − T/2)/(T − 1) for all t > T/2, i.e., capacity first decreases from 1.25 to 0.75, and

then increases back to the original level, with a midday minimum. The first three cases capture the constant,

decreasing and increasing capacity settings respectively. The last one captures a phenomenon that is typical

in cloud computing markets: during peak business hours, part of the service capacity is usually unavailable

because of high demand on the servers due to other contracts and obligations.

We next plot the average price vector over 100 randomly generated problem instances (Figure 2). We con-

sider three settings, where (i) the entire population is impatient ([m1,m2] = [6,0]), (ii) half of the population

is patient ([m1,m2] = [3,3]), (iii) the entire population is patient ([m1,m2] = [0,6]).
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(a) Population is impatient.

0 5 10 15 20 25
0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

Time

A
ve

ra
ge

 P
ric

e

 

 
Case 1
Case 2
Case 3
Case 4

(b) Half of population is patient.
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(c) Entire population is patient.

Figure 2 Average price over 24 time periods of interest.

Figure 2 shows that in all four cases (and for all populations structures), prices track service capacities.

Prices are lower when service capacities are higher and vice-versa (note that the ranges of the vertical axes

in Figure 2 are not the same). Case 2 is to some extent analogous to a typical revenue management setting.

As capacity dwindles towards the end of the horizon, prices rise accordingly. An interesting phenomenon

occurs when as we move from the graph with impatient customers, on the left, towards the one with patient

customers, on the right: Prices become both smoother and higher as customers become more patient. We

explore this observation more in the next subsection.

9.2. Effects of Strategic Behavior

We now investigate how strategic behavior of customers affects revenues, capacity usage and customer

welfare as the parameters s (willingness to wait for strategic customers) and m2
m1+m2

(fraction of customers

who are strategic) change. Our results indicate that as customers become more patient (and strategically

time their purchases), the monopolist uses fewer different prices that are on average higher. This leads

to inefficient use of the available capacity, and reduces both the revenue of the firm and the welfare of

customers.

We assume that willingness to wait for strategic customers s belongs to set {0,1, . . . ,8}. The capacities

are generated independently and uniformly between 0.5 and 1.5 for each time period. Additionally, the sizes

of impatient and patient populations are characterized by the following cases: (case 1) [m1,m2] = [5,1];

(case 2) [m1,m2] = [3,3]; (case 3) [m1,m2] = [1,5]; (case 4) [m1,m2] = [0,6]. That is, Case 1 captures

the scenario, where most of the population is impatient, whereas, Case 4 captures the one where all buyers

are patient. Since parameters are generated randomly, we present our results by averaging them over 100

problem instances.

We first consider the average price (over the horizon) offered by the monopolist for different cases and s

parameters. We also plot average number of different prices used by the monopolist, for the optimal solution

14 We note that no significant changes are observed in our results in any of the subsections of this section, when the entire time
horizon is used for the analysis.
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of the pricing problems. Proposition 2 stated that the optimal price in a given time period must either belong
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Figure 3 Average number of different price levels (left), and average prices (right).

to {pM ,1}, or be equal to the price of a time period where the capacity is tight. This implies that the total

number of price levels used might be smaller than the total number of periods. Our simulation in Figure 3

(left) shows that this is indeed the case. In particular, it shows that the average number of price levels over

the 24-period horizon drops both when a higher fraction of the population is willing to wait for service and

when the customers who are willing to wait become more patient. For example, in Case 2, while roughly

14 prices are needed when customers are willing to wait only up to 1 period, this number drops to 8 if they

are willing to wait for 2 periods and 5 if they are willing to wait for 3 periods. Moreover, this drop in the

number of prices is more significant if a larger proportion of the population is patient. We note that when an

optimal solution for the original pricing problem OPT-1 does not exist, Lemma 1 suggests using perturbed

prices {pt+ εRt}t for an arbitrarily small ε to obtain solutions arbitrarily close to the optimal. In such cases,

our results indicate that the firm uses “essentially” few prices. Our first conclusion in this set of simulations

is that patient customers lead to fewer price levels.

As customers become more patient, the firm becomes more constrained in the prices it can offer. Conse-

quently, to maintain feasibility with fewer prices, and sustain its service guarantees, it may need to increase

the prices at some periods. Recall that the prices were already at or above monopoly price to begin with, so

both the firm and the customers lose as the prices go up. Even a small increase in customer patience causes a

fairly large increase in average prices (see Figure 3 (right)) and, as expected, the effect is more pronounced

when a larger fraction of the population is strategic. Thus, we also conclude that patient customers lead to

higher prices.

We next focus on the effect of these higher prices on the capacity usage, revenues and the customer

welfare. At first glance, the presence of customers that are more patient would seem to lead to better use of

resources. After all, high demand and low supply in one period, followed by low demand and high supply

in the next period could be properly matched if customers are willing to wait. Indeed this phenomenon

does show up in our numerical analysis to a small extent, when customers switch from being completely

impatient to willing to wait for one period (see the Cases 1 and 2 in Figure 4(a)). However, we mainly



Author: Optimal Multi-Period Pricing with Service Guarantees
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 27

observe the opposite effect. As customers become more patient (for s≥ 1), the firm is forced to use fewer

and higher prices. These prices lead to inefficient use of the firm’s resources. The inefficiency is higher

when a larger fraction of customers is impatient (Figure 4(a)). This phenomenon lowers the firm’s revenue

and simultaneously reduces customer welfare (i.e., total surplus of the customers who purchase the service,

where surplus is defined as the difference between the value customer has for the service and her payment).

In Figures 4(b) and 4(c), respectively, we plot the average revenue and customer welfare for different cases

and s parameters. We establish that as customers become more patient, both revenue loss and customer

welfare reduction become quite significant. For instance, it can be seen that for the casem1 = 1,m2 = 5, the

revenue and welfare for s= 8 are respectively 35% and 75% lower compared to a scenario with s= 0. This
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(b) Revenue of the firm.
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(c) Customer Welfare.

Figure 4 Wasted capacity, revenue and customer welfare over 24 time periods.

phenomenon analogous to Braess’ paradox that arises in transportation problems (where opening a new

road may lead to higher overall congestion in the transportation network). However, the mechanism at work

here is different than the one at Braess’ paradox, since in our setting the lower welfare is a consequence of

the firm’s price adjustment (raising prices to maintain feasibility of solution).

9.3. Static Pricing and Multi-period Pricing

In this subsection, we compare the performance of our multi-period pricing algorithms with the static pricing

that is commonly used in practice. The three scenarios considered here are: (case 1) monopolist can use

multiple prices and selects the service time of the customers, as in Section 8; (case 2) monopolist can

use multiple prices but customers receive service in their preferred (earliest) period, as in our base model;

(case 3) monopolist is restricted to using a single price and customers receive service in their preferred

period, which is the case closest to current practice in the cloud computing industry. We assume that half

the population is impatient and half is patient with willingness-to-wait s∈ {0, ...,8}.

Figure 5 shows our result. The cases where the firm is most flexible (case 1) and least flexible (case 3)

in terms of its pricing (and scheduling) policies, respectively, lead to the best and worst cases in terms of

capacity management and firm profits. The efficiency gains from better pricing strategies are large and, thus,

the customers are better off when the firm has the most tools in its arsenal. Interestingly, our base algorithm
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that uses only pricing to direct customers to periods performs well for low values of patience s, but its

performance degrades as s increases. If the firm has some mechanism for scheduling customers to periods

besides pricing and customers are fairly patient, then the pricing scheme with scheduling should be used, as

the performance of this alternative algorithm improves with patience s.
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(b) Revenue of the firm.
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Figure 5 Wasted capacity, revenues, and customer welfare over 24 time periods of interest.

9.4. Running Time

We conclude this section by discussing the running time of our base algorithm. In this section, we consider

problem instances where the horizon length is given by T ∈ {24,48,96}. We still assume that the capacities

are drawn from [0.5,1.5] uniformly at random. We first focus on problems where there are two populations

impatient and s-patient, and s-patient players can wait for s∈ {0,1, . . . ,8} time instants to receive service.

Moreover, the size of impatient and patient populations are drawn from [0,m1] and [0,m2] respectively,

uniformly at random. We then consider a heterogenous setting, where all population groups (characterized

by an arrival and departure period) are present and their sizes are drawn at random. For each of these

randomly generated problem instances, we run our simulations 100 times, and report the average running

time in seconds in the table below.

s= 0 s= 1 s= 2 s= 3 s= 4 s= 5 s= 6 s= 7 s= 8 HETEROGENOUS

T = 24 0.99 3.55 5.88 8.48 10.24 13.23 14.23 18.77 20.10 32.74
T = 48 14.9 51.4 85.0 105.6 141.8 167.3 168.4 165.0 190.7 233.6
T = 96 193 655 868 1102 1232 1304 1501 1489 1550 1802

Running times increase as either s or T grows, but our results do indicate that in instances of reason-

able size (up to T = 96), the optimal prices can be found in a few minutes using a standard laptop (with

3.06 GHz Intel Core 2 Duo processor, and 4 GB 1067 MHz DDR3 memory). Therefore, the algorithm

is sufficiently efficient to be implemented in practice.

10. Conclusions
We study a service firm’s multi-period pricing problem in the presence of time-varying capacities and

heterogeneous customers that are strategic with respect to their purchasing decisions. A distinct feature
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of our model is the service guarantees provided by the firm, which ensure that any customer willing to

pay the announced service price will be able to receive service. Such guarantees are quite appealing to

customers as they allow them to ignore rationing risk, tremendously simplifying the consumers’ decision-

making process. However, providing such guarantees requires the firm to use prices that ensure the firm

has sufficient service capacity in every period. We propose an efficient algorithm to compute the revenue-

maximizing prices while maintaining service guarantees. We show, via numerical simulation, that, in a

typical instance, the optimal pricing policy involves only a few prices and it enables the firm to obtain

significantly more revenues than the static pricing schemes that are common in practice. We show that such

algorithms and insights generalize to complex versions of the problem with random arrivals, departures and

capacity levels, production costs and customer valuations that depend on arrival and departure periods. We

also construct an algorithm that the firm can use if it is capable of scheduling customer service times in

addition to using dynamic pricing and demonstrate numerically that such an algorithm could yield even

higher revenues and resource utilization for the firm.
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ρt0(R)(1−F (pt0)) 6= 0, and hence ρt0(R)> 0. Since condition 3 does not hold, for t̃∈ S , {t∈ {1, . . . , T}|pt = pt0}

we have that ct̃ is not tight, i.e.,

ρt̃(R)(1−F (pt̃))< ct̃ for all t̃∈ S. (14)

Let δ be a constant such that

δ =


pt0 − pM if pt0 ≤ pk for all k ∈ {1, . . . , T},

pt0 − max
{t1|pt1<pt0}

pt1 otherwise.

Consider the price vector p̂, for which pk = p̂k for k /∈ S, and p̂k = pk − ε otherwise, for some 0< ε < δ. It follows

from the definition of δ that if pi ≤ pj for some i, j ∈ {1, . . . , T} then p̂i ≤ p̂j . Hence, the price vector p̂ is also

consistent with ranking R. Moreover, since (1− F (p)) is a continuous function, by (14) we conclude that ε can be

chosen small enough to guarantee that for time periods t ∈ S, ρt(R)(1− F (p̂t)) < ct. Since (p,R) is feasible and

pt = p̂t for t /∈ S, it also follows that for t /∈ S, we have ρt(R)(1− F (p̂t)) = ρt(R)(1− F (pt))≤ ct. Consequently,

(p̂,R) is feasible in OPT-2. The definition of δ also suggests that pM < p̂t < pt = pt0 for t ∈ S. It follows by the

definition of pM and the unimodality of the uncapacitated revenue function that pt(1− F (pt)) < p̂t(1− F (p̂t)) for

t∈ S. Thus, since ρt0(R) 6= 0 we conclude that the revenue obtained from time periods t∈ S, increases under p̂, i.e.,∑
t∈S

p̂t(1−F (p̂t))ρt(R)>
∑
t∈S

pt(1−F (pt))ρt(R). (15)

Since, pt = p̂t for t /∈ S, it also follows that
∑

t/∈S p̂t(1 − F (p̂t))ρt(R) =
∑

t/∈S pt(1 − F (pt))ρt(R). Hence, we

conclude that the overall revenue improves when (p̂,R) is used. Therefore, we reach a contradiction and (p,R) has

to satisfy one of the conditions 1-3 of the proposition.

Proof of Theorem 1 We first describe how the optimal prices and ranking in OPT-2 are obtained, and then we

consider the computational complexity of the solution. As explained in the text, given the set L, the optimal solution

of OPT-2 can be obtained by solving OPT-3. The solution of the latter problem is identical to that of (6), with i= 0,

j = T + 1, p= 0, and hence the optimal value is equal to ω(0, T + 1,0). Given ω(i, j, p), for 0≤ i≤ j ≤ T + 1, one

can construct the optimal sequence of prices in this problem using the recursion in (7): We say that k is the solution for

ω(i, j, p) if the r.h.s. of Eq. (7) takes its maximum at k and k is the earliest time period that achieves the maximum. Let

(k∗, pk∗) be the optimal solution of ω(0, T +1,0) in (7). Then the price of time period k∗ in the optimal solution of (6)

is pk∗ , and prices for time periods earlier and later than k∗ can be obtained by solving for the prices in the subproblems

ω(0, k∗, pk∗) and ω(k∗, T + 1, pk∗).

We assume that at each step the left most subproblem is solved first. We say that the time period k∗ which solves the

ith subproblem has priority i (hence the time period which solves ω(0, T + 1,0) has priority 1). Using these priorities

together with prices, we next construct the ranking vector (consistent with the already obtained prices) that appear

in the solution of OPT-3 (or equivalently to (7) with i = 0, j = T + 1, p = 0). Consider time periods k1 and k2. If

pk1 6= pk2 , it is clear how to rank them: the lower price will have a smaller rank. Now suppose pk1 = pk2 , then the time

period with lower priority receives lower ranking. Note that under this ranking, the ranking vector is consistent with

prices. Moreover, when there are multiple time periods with the same price, the time period that has lower ranking is

the one that is used by the algorithm to solve an earlier subproblem. This implies that the ranking is consistent with

the time period each population receives service in the solution of the recursion (7).
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We next characterize the computational complexity of providing a solution to OPT-2. Note that by Proposition 3,

there exists an optimal solution for OPT-2 with prices that belong to set L. It can be seen from (5) that to compute

the prices in this set we need quantities of the form zijk =
∑k

t1=i

∑j

t2=k
at1,t2 for all i ≤ j ≤ k. Note that there are

O(T 3) values zijk can take, and each value takes at most O(T 2) to compute. Thus, all values of zijk, and the set L can

be computed in O(T 5) time (the computation time can be further reduced by exploiting the relation between different

values of zijk; this is omitted, as it does not affect our final complexity result). Thus, in O(T 5) time we can reduce

OPT-2 to OPT-3. We characterize the computational complexity of the latter problem.

Observe that the algorithm relies on characterizing ω(i, j, p) for all time periods i≤ j and p ∈ L. Since cardinality

of L is O(T 3), there are O(T 5) values of ω(i, j, p) that need to be characterized. These can be computed, using

the condition ω(i, j, p) = 0 if i+ 1 ≥ j − 1, and the recursion in (7). At each step of the recursion there are O(T )

different values k can take. On the other hand, for a given value of k, the corresponding optimal pk can be computed

in O(1): Since for all p ∈L we have p≥ pM , it follows that γijk (p) is decreasing in p, provided that p ∈L. Moreover,

ω(i, j, p) is also decreasing in p for all i, j, since larger p corresponds to tighter constraints in (6). Thus, the pk

that solves (7) is the smallest p ≥ pM that makes the capacity constraint feasible. Therefore, it follows that pk =

max
{
pM , F

−1
(

1− ck/
∑k

l=i+1

∑j−1
m=k alm

)}
, where the latter is the price that makes the capacity at time k tight.

Since by construction both these prices belong to L, and elements of L were computed earlier, it follows that given

k, pk can be constructed in O(1). Thus, we conclude that each step of the recursion in (7) can be computed in O(T ).

Thus, the overall complexity of computing all ω(i, j, p) isO(T 6). Finally, given all values of ω(i, j, p), the construction

of the prices, that solve (6) takes O(T 2) following the procedure described in the beginning of the proof: to solve for

each pk, an instance of the recursion (7) needs to be solved. This takes O(T ) time, and there are O(T ) prices to be

solved for. Similarly constructing priorities and rankings consistent with these prices takes another O(T ). Thus, the

overall complexity of the algorithm is O(T 5 +T 6 +T 2 +T ) =O(T 6).
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A. Online Appendix

A.1. Appendix to Section 3

Proof of Lemma 1 First note that we can add the constraint 0≤ p≤ 1 to the problem without loss of optimality,

since customer valuations are bounded by 1. Consequently, it follows that for a given fixed ranking R, the set of

consistent and feasible prices defines a closed and bounded set. Since the objective function is continuous in prices

(for a fixed ranking), we conclude that optimal prices exist for any given ranking R. By maximizing over the finitely

many possible rankings, we conclude that an optimal solution of OPT-2 exists.

For the second claim, observe that if p is a feasible solution of OPT-1, then (p,RC(p)) is a feasible solution of OPT-

2 with the same objective value. Thus, the maximum of OPT-2 is an upper bound on the supremum of OPT-1. Given

an optimal solution (p?,R?) of OPT-2, and any ε > 0, p?+ εR? is a feasible vector of prices that is consistent with the

ranking R?, and hence (p? + εR?,R?) is a feasible solution of OPT-2. This is because, if R?t <R
?
t′ , then p?t ≤ p?t′ , and

consequently p?t + εR?t < p?t′ + εR?t′ . Moreover, this inequality also implies that in p? + εR? no price is repeated, and

hence the only consistent ranking with this price vector is R?. This implies that R? is the customer-preferred ranking

corresponding to p? + εR?, and thus this price vector is feasible in OPT-1 with the same objective value. Since the

objective of OPT-2 is continuous in prices for a fixed ranking R?, the value of (p? + εR?,R?) approaches to that

of (p?,R?), as ε goes to 0. Thus for ε > 0, p? + εR? is a feasible solution of OPT-1, value of which converges to

maximum of OPT-2 as ε goes to 0. Since maximum of OPT-2 is an upper bound on the supremum of OPT-1, it follows

that these values are equal, and p? + εR? converges to the supremum of OPT-1, as claimed.

If p is an optimal solution of OPT-1, then its value equals to the supremum value. However, as explained earlier this

value equals to the maximum of OPT-2, and (p,RC(p)) is a feasible solution of this problem with the same value.

Thus, the claim follows.

B. Appendix to Section 4

Proof of Proposition 1 Since the valuations are bounded by 1, it is not beneficial to set a price above 1. Now,

suppose (p,R) is a feasible and consistent price ranking. Let p′ be the price vector such that p′t = max{pM , pt}.
We claim that (p′,R) is both consistent and feasible. For consistency, note that if Rt < Rt′ then pt ≤ pt′ . Hence,

max{pM , pt} ≤max{pM , pt′}. Therefore, (p′,R) is consistent. Moreover, because we have (weakly) increased the

prices, it is a feasible solution. Finally, observe that the revenue obtained from (p′,R) is at least equal to the revenue of

(p,R). The reason is ρt(R) does not change, but the uncapacitated revenue function, p(1−F (p)), increases. Namely,∑
t

pt(1−F (pt))ρt(R)≤
∑
t

p′t(1−F (p′t))ρt(R).

since by definition pM maximizes p(1−F (p)). Therefore, starting from a feasible solution, we can construct another

one with weakly better objective value, where all prices are weakly above pM , thus the claim follows.

B.1. Appendix to Section 6

LEMMA 6. Let AL be the population matrix with elements aLi,j and AU be the population matrix with elements aUi,j .

Then, OPT-4 is equivalent to:

max
p≥0,R∈P(T )

T∑
t=1

ptDt(pt,R,A
L)

s.t. Dt(pt,R,A
U)≤ cLt for all t∈ {1, ..., T}

Rt <Rt′⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T},

(OPT-R)
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Proof of Lemma 6: The function Dt(pt,R,A) is weakly increasing in all the elements of the matrix A. There-

fore, for all A ∈ A, the tightest constraint among all of constraints of the form M ≤
∑T

t=1 ptDt(pt,R,A) is the one

given by AL. At optimal solutions of OPT-4, M should be replaced by the maximum value it can attain, which is∑T

t=1 ptDt(pt,R,A
L). Similarly, the tightest constraint among of the constraints of the form Dt(pt,R,A)≤ ct is the

one given by AU and cLt . Thus, the claim follows replacing constraints of this form by Dt(pt,R,A
U)≤ cLt .

Proof of Proposition 4: The constraint set of OPT-R is identical to that of an instance of OPT-2 with parameters

(cL,AU). Additionally, the objective functions of both problems are nonincreasing for all p≥ pM . Since, Proposition

3 relied on the monotonicity of revenue in prices, and the properties of constraint sets, it follows that for OPT-R, a

set L with O(T 3) prices that contains all candidate optimal prices can be constructed (using parameters (cL,AU)).

Thus, we can still use the recursion in (7) to find the optimal sequence of prices. However, γijk (p) needs to be modified

slightly since in OPT-R the feasibility constraints involve AU , whereas, the revenue function involves AL. Therefore,

the recursion in (7) solves OPT-R (again in O(T 6)), using the following modified definition of γijk (p):

γijk (p) =


(

k∑
l=i+1

j−1∑
m=k

aLlm

)
(1−F (p))p if

(∑k

l=i+1

∑j−1
m=k a

U
lm

)
(1−F (p))≤ cLk

−∞ otherwise.
Proof of Proposition 5 Let c∗, A∗ denote the capacity and arrivals in a given problem instance. We will show that

V (c∗,A∗)− V ROB(C,A,c∗,A∗) ≤ θ(2H + 1)P (AU). Since, c∗, and A∗ are arbitrary, the claim then follows from

taking supremum over all c∗ and A∗.

Let VR(c,A,A∗) denote the revenue obtained by (i) offering a price vector consistent with ranking R, (ii) ensuring

that prices are feasible for arrival matrix A and capacity vector c, (iii) having arrival realization A∗, i.e.,

VR(c,A,A∗) = max
p≥0

T∑
t=1

ptDt(pt,R,A
∗)

s.t. Dt(pt,R,A)≤ ct for all t∈ {1, ..., T}

pt ≤ pt′ if Rt <Rt′ for all t, t′ ∈ {1, ..., T}.
Note that imposing the constraint pt ≤ pt′ if Rt′ =Rt + 1 (for all t, t′) is equivalent to imposing the constraint pt ≤
pt′ if Rt <Rt′ in the above optimization problem, due to the transitivity of the inequalities. Thus, we conclude

VR(c,A,A∗) = max
p≥0

T∑
t=1

ptDt(pt,R,A
∗)

s.t. Dt(pt,R,A)≤ ct for all t∈ {1, ..., T}

pt ≤ pt′ if Rt′ =Rt + 1 for all t, t′ ∈ {1, ..., T}.

(16)

Let λt ≥ 0 denote the Lagrange multiplier corresponding to the capacity constraint associated with time t, and

µt,t′ ≥ 0 be the Lagrange multiplier associated with the ranking constraint pt ≤ pt′ , assuming Rt′ =Rt + 1. The KKT

conditions (see, for example, Bertsekas (1999)) imply that for all t, the optimal prices satisfy:

Dt(pt,R,A
∗) + pt

∂Dt(pt,R,A
∗)

∂pt
−λt

∂Dt(pt,R,A)

∂pt
+µt′′,t−µt,t′ = 0, (17)

where t, t′, and t′′ are such that Rt′ =Rt + 1 and Rt =Rt′′ + 1. By the complementary slackness conditions, if two

prices pt and pt′ are different, then µt,t′ = 0. Thus, summing the KKT conditions for all periods that have the same

price p (and noting that ranking of such periods are necessarily consecutive), µt terms cancel, and we obtain:∑
t: pt=p

[
Dt(p,R,A

∗) + p
∂Dt(p,R,A

∗)

∂p
−λt

∂Dt(p,R,A)

∂p

]
= 0.
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By definition Dt(p,R,A) = ρt(R,A)(1−F (p)), where ρt(R,A) is the R-induced potential demand for population

matrix A. Hence, using the notation F ′(p) = f(p), we obtain∑
t: pt=p

[ρt(R,A
∗)(1−F (p))− p ρt(R,A∗)f(p) +λtρt(R,A)f(p)] = 0.

Rearranging terms, this equation leads to∑
t: pt=p

ρt(R,A)λt =
∑

t: pt=p

ρt(R,A
∗)

[
p− 1−F (p)

f(p)

]
≤
∑

t: pt=p

ρt(R,A
∗),

where the inequality follows from the fact that optimal prices are bounded by 1, and 1−F (p)

f(p)
≥ 0. Thus, summing the

above equality over all periods t (or all different price levels p that appear in an optimal solution) we obtain
T∑
t=1

ρt(R,A)λt ≤
T∑
t=1

ρt(R,A
∗) = P (A∗)≤ P (AU), (18)

where P (A) =
∑

i,j
ai,j . By the complementary slackness conditions, ct = Dt(pt,R,A) = ρt(R,A)(1− F (pt)) ≤

ρt(R,A) whenever the Lagrange multiplier λt 6= 0. Hence, the above inequality also implies
T∑
t=1

ctλt ≤ P (AU). (19)

We next consider how VR(c,A,A∗) changes as c increases and A decreases. The Envelope Theorem (see Kimball

(1952)) suggests that the derivatives ∂VR(c,A,A∗)
∂ct

and ∂VR(c,A,A∗)
∂ai,j

are equal to

∂VR(c,A,A∗)

∂ct
= λt and

∂VR(c,A,A∗)

∂ai,j
=−λt′(i,j,R)(1−F (pt′(i,j,R))), (20)

where t′(i, j,R) represents the period t′ that has minimum ranking in R within {i, ..., j}, i.e., the time period popula-

tion ai,j receives service.

Observe that by definition VR is increasing in c and decreasing in A. Since cUt
cLt

and
aUi,j

aL
i,j
≤ 1 + θ, it follows that

0≤ VR(c∗,A∗,A∗)−VR(cL,AU ,A∗)≤ VR(cU ,AL,A∗)−VR(cL,AU ,A∗)

≤ VR((1 + θ)cL,AL,A∗)−VR(cL,AL(1 + θ),A∗)
(21)

Using the Fundamental Theorem of Calculus (and the notation gR(x) = VR((1 +x)cL,AL,A∗)) it follows that

0≤ VR((1 + θ)cL,AL,A∗)−VR(cL,AL,A∗) =

∫ θ

x=0

dgR(x)

dx
dx=

∫ θ

x=0

T∑
t=1

∂VR
∂ct

((1 +x)cL,AL,A∗)cLt dx

≤
∫ θ

x=0

T∑
t=1

∂VR
∂ct

((1 +x)cL,AL,A∗)(1 +x)cLt dx.

(22)

Observing from (20) that ∂VR

∂ct
((1 + x)cL,AL,A∗) equals to the Lagrange multiplier λt for the problem instance with

capacity vector (1 +x)cL, and using (19) and (22), we obtain

VR((1 + θ)cL,AL,A∗)−VR(cL,AL,A∗)≤
∫ θ

x=0

P (AU)dx= θP (AU). (23)

Following a similar approach, we also obtain

0≤ VR(cL,AL,A∗)−VR(cL, (1 + θ)AL,A∗) =−
∫ θ

x=0

∑
i,j

∂VR
∂ai,j

(cL, (1 +x)AL,A∗)ai,jdx

≤−
∫ θ

x=0

∑
i,j

∂VR
∂ai,j

(cL, (1 +x)AL,A∗)(1 +x)ai,jdx

(24)
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Using (20), it follows that − ∂VR

∂ai,j
(cL, (1 + x)AL,A∗) = λt′(i,j,R)(1−F (pt′(i,j,R)))≤ λt′(i,j,R), where λt denotes the

Lagrange multiplier in a problem instance with parameters cL, (1 + x)AL,A∗. Thus, using (24) and noting from the

definition of t′(i, j,R) that ρt(R,A) =
∑

i,j:t′(i,j,R)=t ai,j , we obtain,

VR(cL,AL,A∗)−VR(cL, (1 + θ)AL,A∗)≤
∫ θ

x=0

T∑
t=1

λtρt(R,A
L(1 +x))dx. (25)

Thus it follows from (18) that

VR(cL,AL,A∗)−VR(cL, (1 + θ)AL,A∗)≤
∫ θ

x=0

P (AU)dx= θP (AU). (26)

Adding (23) and (26), and using it in the right hand side of (21) it follows that

VR(c∗,A∗,A∗)−VR(cL,AU ,A∗)≤ 2θP (AU). (27)

Note that by linearity of the objective of (16) in its third argument, and the fact that aLi,j ≤ a∗i,j ≤ aUi,j ≤ (1 + θ)aLi,j ,

it follows that VR(cL,AU ,A∗)≤ VR(cL,AU ,AL)(1 + θ). On the other hand, since maximum price customers can pay

for service is 1, it follows from the definition of P (A) that VR(cL,AU ,AL)≤ P (AL)≤ P (AU). Thus, we conclude

VR(cL,AU ,A∗)−VR(cL,AU ,AL)≤ θP (AU). Combining this with (27) we obtain

VR(c∗,A∗,A∗)≤ VR(cL,AU ,AL) + 3θP (AU). (28)

Maximizing both sides of this inequality over R and noting that maxR VR(c∗,A∗,A∗) = V (c∗,A∗), we conclude

V (c∗,A∗) ≤ maxR VR(cL,AU ,AL) + 3θP (AU). Note that by definition maxR VR(cL,AU ,AL) equals the solution

of OPT-R and V ROB(C,A,c∗,A∗) is larger than this solution (OPT-R gives the worst case profits for optimal prices

that are feasible for all capacities in C, and arrivals in A, whereas V ROB(C,A,c∗,A∗) is the realized profit). Thus, we

conclude V (c∗,A∗)≤ V ROB(C,A,c∗,A∗) + 3θP (AU), and the claim follows.

B.2. Appendix to Section 7

Proof of Lemma 2 Let p? andR? denote an optimal solution of OPT-5. Observe that for all t, the set Pε∩ [p?t , p
?
t +

ε) contains a single element. Denote this element by p̂t.

We first show that p̂ is consistent with ranking R?. Note that if R?t <R?t′ then p?t′ ≥ p?t . Moreover, since we have

p?t′ + ε≥ p?t + ε, and p̂k is characterized by intersection of [p?k, p
?
k + ε) with Pε for all k, it follows that p̂t′ ≥ p̂t, and

hence the consistency claim.

By Assumption 2, ht(p,R?) is decreasing in p, for any R. Therefore, ({p̂t},R?) is a feasible solution of OPT-5. By

Assumption 2 again, and the fact that p̂t ∈ [p?t , p
?
t + ε) for all t, it follows that

v=
∑
t

gt(p
?
t ,R

?)≤
∑
t

(
gt(p̂t,R

?) + ltε
)
. (29)

On the other hand, by construction p̂t ∈ Pε for all t, thus ({p̂t},R?) is a feasible solution of OPT-6. Hence vε ≥∑
t
gt(p̂t,R

?), and together with (29), this implies that vε ≥ v− ε
∑

t
lt.

Proof of Lemma 3 Construction of optimal prices and ranking, using the dynamic programming recursion in (10)

is identical to the construction given in Theorem 3, and is omitted. In the rest of the proof we characterize the compu-

tational complexity of this construction.
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In order to solve the recursion in (10) we compute all values of ω(i, j, p) by solving O(T 2|Pε|) subproblems. At

each step of the recursion we solve for the optimal k and p. Finding these requires at most O(T |Pε|) trials. Given

a value of p and k, we need to evaluate γ̂ijk (p). This requires checking if constraints are satisfied in the subproblem

(hence computing hk(p,R)), and evaluating the corresponding objective value (gk(p,R)) in the relevant subproblem.

Thus, computation of γ̂ijk (p) can be completed in O(s(T )) time, and the overall complexity is O
(
T3s(T )

ε2

)
.

B.3. Appendix to Section 8

Proof of Lemma 4: Let S1 be a revenue maximizing vector in S(i, j, p, k). Suppose there exits a price vector

S2 ∈ S(i, j, p, k) and period t such that pt(S2) = p < pt(S1). We show that no such price vector exists, hence proving

the lemma.

Define S′ to be the price vector such that

pt(S
′) =

{
p pt(S1) = p or pt(S2) = p

pt(S1) Otherwise

To prove the claim, first consider the assignment of the populations to the periods when the price vector is S1. LetA1

be the set of periods that have price p under S1 and A2 be the set of such periods under S2. Note that in S′, we update

S1 by decreasing the prices of periods in A2 \A1 to p. Observe that the price change only matters for populations that

are present in the system in a period in A2 \A1, but not A2 ∩A1, since it is possible to schedule all the remaining

populations exactly as we did under S1. Since S2 ∈ S(i, j, p, k) is feasible, it follows that for S′, there exists a feasible

schedule that assigns all populations that are present in a time instant in A2 \A1, but not A2 ∩A1, to time instants in

A2 \A1, even when the price offered at these periods equals to p. Moreover, because p≥ pM , reducing the prices can

only increase the revenue, implying that S′ leads to higher revenues than S1, and contradicting with the assumption

that S1 is a revenue maximizer. Hence, the lemma follows.

Proof of Lemma 5: We say that interval [l, k] satisfies the “minimum requirements” for having price p if this

interval can serve all customers who can receive service only in this interval at price p. Namely,
∑k

u=l cu ≥ (1 −

F (p))
∑k

u=l

∑k

v=u auv. This is a necessary condition for time instants in this interval to have price equal to p.

We claim that the algorithm described in Figure 6 finds set L̂ in polynomial time. To prove the correctness of

the algorithm, first observe that if interval [i + 1, k] satisfies the minimum requirements, then we can serve all the

populations who arrive at the system after time i, and can wait up to (and including time) k, to this interval at price

p. Hence, L̂= {i+ 1, i+ 2, · · · , k}. We also show at step 3 of the algorithm that if interval [`, k] does not satisfy the

minimum requirements, then ` does not belong to L̂(i, j, p, k). To show this consider the largest ` such that [`, k] does

not satisfy the minimum requirements, and assume that ` belongs to L̂. Note that because we chose the largest such `,

all the populations that arrive at time ` or after that need to be scheduled to periods in [`, k] for service. However, this

period does not satisfy the minimum requirements, and we obtain a contradiction.

Finally, we note that the algorithm is polynomial; the number of recursions is bounded by k− i, and we can verify

the minimum requirements in polynomial time.
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FindL(i,k,p,A,c):

1. If interval [k, k] does not satisfy the minimum requirements:
It is infeasible to assign time instant k price p.
Terminate and Return S = ∅.

2. If interval [i+ 1, k] satisfies the minimum requirements.
Terminate and Return S = {i+ 1, · · · , k}.

3. Let ` be the largest element in [i + 1, k] such that [`, k] does not satisfy the minimum
requirements.
(Time instant ` cannot receive price p)

(a) Define a new problem instance where period ` is removed, and search for the maximal
set which receives price p in this new problem instance.

(b) Label periods in the new problem as i′, (i+ 1)′, . . . (k− 1)′. Construct a population
matrix A′ = {a′i,j} and capacity vector c′ for the new problem.

a′i′,j′ =



ai′,j′ j′ < `− 1

ai′,j′ + ai′,` i′ < `, j′ = `− 1

ai′,j′+1 i′ < `, j′ > `− 1

a`,j′+1 + a`+1,j′+1 i′ = `

ai′+1,j′+1 ` < i′

c′j′ =

{
c′j j′ < `

cj′+1 `≤ j′ <k

(c) Let S′ = FindL(i′, k′, p,A′, c′)
i. If S′ = ∅

It is infeasible to assign price p to any subset of [i, k].
Terminate and Return S = ∅.

ii. If S′ 6= ∅
Construct the solution from S′.

S = {s|s∈ S′ and s < `, or s≥ l and s− 1∈ S′}.

Terminate and Return S.
Figure 6 Algorithm FindL(i,k,p,A,c): Finds the maximal subset of (i, k] (excluding time i but including time k)

which can receive price equal to p , where the population matrix and capacities are given by A and c.
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