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Many social and economic systems are naturally represented as networks, from o�-line and on-line social
networks, to bipartite networks, like Net�ix and Amazon, between consumers and products. Graphons,
developed as limits of graphs, form a natural, nonparametric method to describe and estimate large networks
like Facebook and LinkedIn. Here we describe the development of the theory of graphons, for both dense and
sparse networks, over the last decade. We also review theorems showing that we can consistently estimate
graphons from massive networks in a wide variety of models. Finally, we show how to use graphons to estimate
missing links in a sparse network, which has applications from estimating social and information networks in
development economics, to rigorously and e�ciently doing collaborative �ltering with applications to movie
recommendations in Net�ix and product suggestions in Amazon.
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Networks are the natural framework to describe social and economic systems with pairwise
interactions. �is includes not only social networks among individuals, like Facebook and LinkedIn,
but also bipartite networks between di�erent types of entities, like the Net�ix movie-user network
and the Amazon consumer-product network. Graphons, developed as limits of sequences of graphs,
form a natural, non-parametric method to model and estimate large networks. Here we informally
describe some of the development of the theory of graphons over the last dozen years, and provide
an application of graphons to the completion of noisily, sparsely sampled massive networks.

1 GRAPH LIMITS
�e theory of limits of sequences of dense graphs (i.e., graphs in which the number of edges scale
as the square of the number of vertices) was developed over roughly a decade starting around 2006
[19–21, 37]. Of course, it is always possible to a de�ne a limit of a graph sequence – if we make
the notion too weak, then every sequence trivially converges to the same point; if we make it too
strong, each sequence could converge to a di�erent point. �e key was to �nd a notion that was
“just right.” �is was done in a series of papers with Lovász, Sos and Vestergombi [20, 21].

In [19] we de�ne a metric to allow us to compare graphs of di�erent sizes. For this, we rescale
two graphs to be of the same size by creating copies of each vertex so that the two graphs then have
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Fig. 1. The half-graph and a random graph, their empirical graphons, and their limits.

the same number of vertices. Speci�cally, if the two graphs have n1 and n2 vertices, and k1 and k2
are the smallest numbers such that k1n1 = k2n2, we “blow up” each vertex in the �rst graph by k1,
and each one in the second by k2. We then replace each edge in the original graphs by complete
bipartite graphs between the blown-up vertices. We look at the Frieze-Kannan cut distance [29] of
the di�erence between the two blown-up graphs, where the cut distance is basically the value of
the cut between a set and its complement, taking the sup over all sets. Finally, since vertex labels
should not ma�er, we take the minimum over all relabelings of the vertices. �e resulting metric is
called the cut metric.

Our �rst notion of convergence [19, 20] is what we call metric convergence, which means simply
that the sequence of graphs is Cauchy in the cut metric. �e fact that a limit exists was established
by Lovász and Szegedy [37] using a weak version of the Szemerédi Regularity Lemma [29] and
a martingale argument. �e limit is a two-variable symmetric function, called a graphon, o�en
denoted byW (x ,y), which is basically a continuous version of the adjacency matrix of a graph on
[0, 1]2. In [12], we show that the limit is unique up to measure-preserving transformations of the
underlying feature space.

Note that a graph on n vertices can be represented as a piecewise constant graphon by dividing
the unit square [0, 1]2 into n2 small squares of side length 1/n, and representing the presence of
an edge between vertices i and j by a 1 on the squares ij and ji , and its absence by a 0. �is
representation is called the empirical graphon of the graph. If we visualize a 0 in the empirical
graphon as a small white square, and a 1 as a small black square, graph convergence can be seen as
convergence of the these black and white empirical graphons to a gray-scale limiting graphon. See
Figure 1 for an illustration for the half-graph and an Erdös-Renyı́ random graph.

�ere is a natural local notion of convergence in dense graphs. We can ask that all induced �nite
subgraph densities (e.g., the edge density, triangle density, Peterson graph density, . . . ) converge
simultaneously. We prove that a sequence of dense graphs converges in metric if and only if it is
subgraph convergent [20].
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We also introduce several “global” notions of convergence [10, 21]. We have one notion which
corresponds to convergence of all �nite two-body statistical physics models in the microcanonical
ensemble (the ensemble in which each species of vertex represents a �xed percentage of all vertices).
We have another notion which corresponds to all multi-way cuts and bisections converging. We
show that a sequence of dense graphs converges according to these and a few other global notions
if and only if it converges in metric [21]. More recently, a notion of large deviations convergence
was de�ned [10], which is also equivalent with the other global and local notions for dense graphs.

Sparse graphs of bounded degree are much more fragile. Here we have no notion of metric
convergence. �e natural notion of local convergence is convergence of a graph rooted at a
random point, known as Benjamini-Schramm convergence [5]. Benjamini-Schramm convergence
is equivalent to subgraph convergence [11], but global notions of convergence are stronger [10].

�e most interesting case is that of sparse graphs of unbounded average degree, like the power-
law networks in Facebook and LinkedIn. �ese cases were much more complicated due to the fact
that much of the necessary graph theory (e.g., the relevant case of the weak Regularity Lemma)
had not yet been developed. Over the past �ve years, we have developed two ways to generalize
the theory.

�e �rst way is by rescaling the empirical graphon function, dividing it by the edge density
ρ of the graph sequence (which is tending to zero in the case of sparse graphs). �is was done
by Bollobás and Riordan in the case when the graphs had no “dense spots,” corresponding to the
graphon being a bounded function [8]. In collaboration with Cohn and Zhao [15, 16], we develop a
theory of “uniformly upper regular” sparse graphs of unbounded average degree; we show that
these converge to graphons in Lp spaces, corresponding to growing sequences with power-law
tails. In the process of doing this, we formulate and prove a weak form of the Regularity Lemma
for sparse graphs corresponding to graphons of unbounded degree.

�e second way to get graph limits for graphs of unbounded average degree, again graphs with
very long tails, is by “stretching” the empirical graphon (and its domain) by 1/√ρ so that the
integral of the graphon is again unity. �is leads to a limit de�ned on the positive quadrant rather
than the unit square, and hence these graphons provide a good description of networks where
the underlying features cannot be restricted to bounded domains. See Figure 2 for a comparison
of this with the rescaling approach. In work with Cohn and Holden [17], we develop a theory of
sparse graphs of unbounded degree with “uniformly regular tails,” show how to construct limits
for sequences obeying this regularity condition, and prove many properties of the these graphons.
Finally, we show that any graph sequence which satis�es both the conditions of uniform upper
regularity and uniformly regular tails must be dense; so dense graphs are the only overlap of our
two theories of sparse graphs of unbounded degree.

2 MODELING LARGE NETWORKS
�e classic way to model large networks uses the so-called stochastic block model [32], which is a
generalization of the Erdös-Renyı́ random graph to k species of vertices, with �xed densities of
each species of vertex, and �xed probabilities that any two species connect to each other, including
a �xed probability of intra-species connection, which is in general di�erent within each species.

As graphs get larger and larger, reasonable descriptions have the number of species scale with
the number of vertices: k = k(n), which tends to lead to over��ing. Instead, starting over a decade
ago [31], researchers began to model large networks non-parametrically by choosing n points
randomly from some feature space, x1,x2, · · · ,xn ∈ Ω, and a two-variable, bounded symmetric
functionW (xi ,x j ) : Ω×Ω → [0, 1]. A random graph consistent with this function is then generated
by saying that i is connected to j with probabilityW (xi ,x j ).
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Fig. 2. Three graphons associated with the same simple graph G on five vertices: the emprical graphon used
in theory of dense graph convergence, the rescaled a version used in the uniformly upper regular theory of
sparse graph convergence, and the stretched version used in the theory for sparse graphs with uniformly
regular tails.

�e graphs generated in this way can easily be seen to be dense, whereas real life networks tend
to be sparse. But our two methods for constructing graph limits for sequences of random sparse
graphs of unbounded degree naturally yield random models of massive sparse networks.

Our �rst method [15] chooses features x1,x2, · · · ,xn from some compact feature space, and
generates random graphs with long tails corresponding to unbounded graphonsW , connecting
vertices with features xi and x j with probability min{1, ρW (xi ,x j )}, where ρ is the desired target
density of our graph.

Our second method [17] is more complex: It chooses features x1,x2, · · · from an unbounded
feature space according to a Poisson process with an intensity which scales linearly with time.
At time t , the process connects vertices i and j born up to time t with probabilityW (xi ,x j ). �e
resulting graph at time t retains only those vertices which have been connected to at least one
other vertex by that time, leading to a graph with a �nite number of vertices at any �nite time.
We show that this kind of model is quite natural by proving a generalization of the celebrated
Aldous-Hoover �eorem [3, 33] to sparse graphs. In our se�ing, it says that under suitable regularity
conditions, any family of graphs with vertices labeled by their birth time that is invariant under
measure-preserving transformations of time must be of the above form. Our model generalizes the
work of Caron and Fox [22], and is very similar to a model introduced simultaneously by Veitch
and Roy [41].

3 LEARNING SPARSE GRAPHS
How does one learn a network from a single sample, e.g., allowing us to predict how the network
might look when it’s twice its current size? �e traditional approach is to assume that the network
is a stochastic block model with k types of vertices, cluster the vertices according to type, and then
use this clustering to estimate the parameters of the model (the densities of each of the k types,
plus the k(k + 1)/2 connection probabilities within and between types) and then use that estimated
stochastic block model to make predictions about the network [4, 9, 24, 26–28, 32, 34, 38, 40, 42, 43].
See [1, 2] for recent work with rigorous consistency guarantees for sparse graphs.

As we discussed above, for very large networks, it is o�en be�er to take a non-parametric
approach [6, 7, 25, 35, 39]. Here the idea is to get an estimate, Ŵ for the graphonW representing
the network, and then generate realizations from that estimation. For bounded graphons, it had
been shown that this leads to consistent estimation for both dense and sparse graphs, see, e.g.,
[23, 30, 36, 44], to name a few of the more recent papers on the subject. In collaboration with



Christian Borgs and Jennifer Chayes

Cohn and Ganguly [14], we showed that this leads to consistent estimation for sparse massive
networks if, e.g.,W ∈ L2, provided that the average degree diverges. Hence one can use graphons
for statistically consistent estimation for power-law graphs. In collaboration with Smith [13], we
showed that, for sparse graphs corresponding to boundedW , it is possible to consistently estimate
while maintaining edge di�erential privacy.

4 NETWORK COMPLETION AND COLLABORATIVE FILTERING ON SPARSE
GRAPHS

An area of some interest in economics is how to “complete” sparsely, noisily sampled networks.
For example, in development economics, one sometimes has measurements representing sparsely
and noisily sampled connections among individuals. How sparsely can we sample and still get an
accurate estimate of the missing links? Similarly, in bipartite networks like the Net�ix user-movie
network or the Amazon consumer-product network, can we show that we can complete the network
even if it is very sparsely sampled with some general noise? Here we follow a collaborative �ltering
approach, which however must be modi�ed to account for the sparsity of the sample. What if
the sampling is so sparse that two people for whom we are trying to estimate the probability
of a connection have no connections in common? Or what if there are no sets of movies in
common between a given individual and another on the Net�ix network? In collaboration with
Lee and Shah [18], we used the “expanded neighborhood” approach of Abbe and Sandon [1, 2],
who study estimation for stochastic block models. �e idea is to look not just at individuals who
share a common connection, but instead expand the neighborhood until a common connection
is found. Similarly, we expand the bipartite user-movie-user-movie-· · · neighborhood until there
an overlap. Here we treat graphons as operators in the expansion and need to do estimates to
control the variance. Assume there are n individuals on the network, each described by features in
a d-dimensional space. We show that, if the underlying graphon describing this network is Lipshitz,
then the mean square error of our estimated graphon tends to zero provided that we sample the
network with density p = ω(d2n−1). For high-dimensional latent spaces, which tend to be the
appropriate descriptions for most real-world networks, this is a signi�cant improvement over the
best previous result, that of Cha�erjee [23], who showed that the mean square error of the estimated
graphon tends to zero provided that the network is sampled with density p = ω(n−2/(d+2)).
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