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ABSTRACT
We present a large-scale study of gender bias in occupation clas-

sification, a task where the use of machine learning may lead to

negative outcomes on peoples’ lives. We analyze the potential allo-

cation harms that can result from semantic representation bias. To

do so, we study the impact on occupation classification of including

explicit gender indicators—such as first names and pronouns—in

different semantic representations of online biographies. Addition-

ally, we quantify the bias that remains when these indicators are

“scrubbed,” and describe proxy behavior that occurs in the absence

of explicit gender indicators. As we demonstrate, differences in true

positive rates between genders are correlated with existing gender

imbalances in occupations, which may compound these imbalances.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Applied
computing → Document management and text processing.

KEYWORDS
Supervised learning, algorithmic fairness, gender bias, online re-

cruiting, automated hiring, compounding injustices.
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1 INTRODUCTION
The presence of automated decision-making systems in our daily

lives is growing. As a result these systems play an increasingly

active role in shaping our future. Far from being passive players

that consume information, automated decision-making systems are

participating actors: their predictions today affect the world we live

in tomorrow. In particular, they determine many aspects of how
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we experience the world, from the news we read and the products

we shop for to the job postings we see. The increased prevalence

of machine learning has therefore been accompanied by a growing

concern regarding the circumstances and mechanisms by which

such systems may reproduce and augment the various forms of

discrimination and injustices that are present in today’s society.

One domain in which the use of machine learning is increasingly

popular—and in which unfair practices can lead to particularly

negative consequences—is that of online recruiting and automated

hiring. Maintaining an online professional presence has become

increasingly important for people’s careers, and this information

is often used as input to automated decision-making systems that

advertise open positions and recruit candidates for jobs and other

professional opportunities. In order to perform these tasks, a sys-

tem must be able to accurately assess people’s current occupations,

skills, interests, and “potential.” However, even the simplest of these

tasks—determining someone’s current occupation—can be non-

trivial. Although this information may be provided in a structured

form on some professional networking platforms, this is not always

the case. As a result, recruiters often browse candidates’ websites

in an attempt to manually determine their current occupations. Ma-

chine learning promises to reduce this burden; however, as we will

explain in this paper, occupation classification is susceptible to gen-

der bias, stemming from existing gender imbalances in occupations.

To study gender bias in occupation classification, we created a

new dataset of hundreds of thousands of online biographies, written

in English, from the Common Crawl corpus. Because biographies

are typically written in the third person by their subjects (or people

familiar with their subjects) and because pronouns are gendered

in English, we were able to extract (likely) self-identified binary

gender from the biographies. We note, though, that this binary

model is a simplification that fails to capture important aspects of

gender and erases people who do not fit within its assumptions.

Using this dataset, we predicted people’s occupations by per-

forming multi-class classification using three different semantic

representations: bag-of-words, word embeddings, and deep recur-

rent neural networks. For each representation, we considered two

scenarios: (1) where explicit gender indicators are available to the

classifier, (2) where explicit gender indicators are “scrubbed” to

promote fairness or to comply with regulations or laws. We define

explicit gender indicators to be information, such as first names and

gendered pronouns, that make it possible to determine gender. We

note that the practice of “scrubbing” explicit gender indicators and

other sensitive attributes is not unique to machine learning, and is

often used as a way to mitigate the effects of implicit and explicit

bias on decisions made by humans. For example, gender diversity
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in orchestras was significantly improved by the introduction of

“blind” auditions, where candidates play behind a curtain [24].

To quantify gender bias, we compute the true positive rate (TPR)

gender gap—i.e., the difference in TPRs between genders—for each

occupation. The TPR for a given gender and occupation is defined

as the proportion of people with that gender and occupation that

are correctly predicted as having that occupation. We also compute

the correlation between these TPR gender gaps and existing gen-

der imbalances in occupations, and show how this may compound

these imbalances; we connect this finding with an existing notion of

indirect discrimination in political philosophy.We show that “scrub-

bing” explicit gender indicators reduces the TPR gender gaps, while

maintaining overall classifier accuracy. However, we also show

that significant TPR gender gaps remain in the absence of explicit

gender indicators, and that these gaps are correlated with existing

gender imbalances. For orchestra auditions, the sounds made by

candidates’ shoes mean that a curtain is not sufficient to make an

audition “blind.” It is therefore common practice to additionally roll

out a carpet or to ask candidates to remove their shoes [24]. By

analogy, “scrubbing” explicit gender indicators is like introducing

a curtain—the sounds made by the candidates’ shoes remain.

Our paper has two main takeaways: First, “scrubbing” explicit

gender indicators is not sufficient to remove gender bias from an

occupation classifier. Second, even in the absence of such indicators,

TPR gender gaps are correlated with existing gender imbalances in

occupations; occupation classifiers may therefore compound exist-

ing gender imbalances. Although we focus on gender bias, we note

that other biases, such as those involving race or socioeconomic sta-

tus, may also be present in occupation classification or in other tasks

related to online recruiting and automated hiring. We structure our

analysis so as to inform discussions about these biases as well.

In the next section, we provide a brief overview of related work.

We then describe our data collection process in Section 3 and outline

our methodology in Section 4, before presenting our analysis and

results in Section 5. We conclude with a discussion in Section 6.

2 RELATEDWORK
Recent work has studied the ways in which stereotypes and other

human biases may be reflected in semantic representations such

as word embeddings [10, 13, 21]. Natural language processing

researchers have also studied gender bias in coreference resolu-

tion [34, 44], showing that systems perform better when linking

a gender pronoun to an occupation in which that gender is over-

represented than to an occupation in which it is underrepresented.

Gender bias has also been studied in YouTube’s autocaptioning [38],

where researchers found a higher word error rate for female speak-

ers. In the context of language identification, researchers have also

investigated racial bias, showing that African-American English is

often misclassified as non-English [8]. Finally, machine learning

methods for identifying toxic comments exhibit disproportionately

high false positive rates for words like gay and homosexual [17].
In the context of structured data, there have been extensive

discussions about proxy behavior that may occur when sensitive

attributes are not explicitly available but can be determined from

other attributes [4, 33, 43]. Related discussions have focused on

the phenomenon of differential subgroup validity [3], where the

choice of attributes may disadvantage groups for whom the cho-

sen attributes are not equally predictive of the target label [12].

Barocas and Selbst [4] discussed these issues in the context of auto-

mated hiring; Kim [28] explained how data-driven decisions that

systematically bias people’s access to opportunities relate to exist-

ing antidiscrimination legislation, identifying voids that may need

to be filled to account for potential risks stemming from automated

decision-making systems. Researchers have also discussed making

available sensitive attributes as a means to improve fairness [18],

as well as various ways to use these attributes [20, 33]. Finally,

although our paper does not directly consider ranking scenarios,

fairness in ranking is particularly relevant to discussions about gen-

der bias in online recruiting and automated hiring [7, 14, 22, 40, 42].

We quantify gender bias by computing the TPR gender gap—

i.e., the difference in TPRs between genders—for each occupation.

This notion of bias is closely related to the equality of opportunity

fairness metric of Hardt et al. [25]. We choose to focus on TPR

gender gaps because they enable us to study the ways in which

gender imbalances may be compounded; in turn, we relate this to

compounding injustices [26]—an existing notion of indirect discrim-

ination in political philosophy that holds that it is a general moral

duty to refrain from taking actions that would harm people when

those actions are informed by, and would compound, prior injus-

tices suffered by those people. We show that the TPR gender gaps

are correlated with existing gender imbalances in occupations. As

a result, occupation classifiers compound injustices when existing

gender imbalances are attributable to historical discrimination.

Our paper is also closely related to research on gender bias

in hiring [5, 23, 35, 36]. In particular, Bertrand and Mullainathan

[6] conducted an experiment in which they responded to help-

wanted ads using fictitious resumes, varying names so as to signal

gender and race, while keeping everything else the same. They were

therefore able to measure the effect of (inferred) gender and race on

the likelihood of being called for an interview. Similarly, we study

the effect of explicit gender indicators on occupation classification.

Computational linguistics researchers have explored the use of

lexical and syntactic features to infer authors’ genders [15, 30].

Given that our dataset consists of online biographies, our paper is

also related to research on differences between the ways that men

and women represent themselves. In the context of online profes-

sional presences, Altenburger et al. [2] analyzed self-promotion in

LinkedIn, finding that women are more modest than men in ex-

pressing accomplishments and are less likely to use free-form fields.

Researchers have also studied differences in volubility between

men and women [11], showing that women’s fear of being highly

voluble is justified by the fact that both men and women negatively

evaluate highly voluble women. Moving beyond self-representation,

Niven and Zilber [32] analyzed congressional websites and found

that differences between the ways that the media portray men and

women in Congress cannot be explained by differences between the

ways that they portray themselves. Meanwhile, Smith et al. [37] an-

alyzed attributes used to describe men and women in performance

evaluations, showing that negative attributes are more often used to

describe women than men. This research on representation by oth-

ers relates to our paper because we cannot be sure that the online

biographies in our dataset were actually written by their subjects.
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3 DATA COLLECTION PROCESS
To study gender bias in occupation classification, we created a new

dataset using the Common Crawl. Specifically, we identified online

biographies, written in English, by filtering for lines that began

with a name-like pattern (i.e., a sequence of two capitalized words)

followed by the string “is a(n) (xxx) title,” where title is an occu-

pation from the BLS Standard Occupation Classification system.
1

We identified the twenty-eight most frequent occupations based on

their appearance in a small subset of the Common Crawl. In a few

cases, we merged occupations. For example, we created the occupa-

tion professor by merging occupations that consist of professor and a
modifier, such as economics professor. Having identified the most fre-

quent occupations, we processed WET
2
files from sixteen distinct

crawls from 2014 to 2018, extracting online biographies correspond-

ing to those occupations only. Finally, we performed de-duplication

by treating biographies as duplicates if they had the same first name,

last name, and occupation, and either no middle name was present

or one middle name was a prefix of the other. The resulting dataset

consists of 397,340 biographies spanning twenty-eight different

occupations. Of these occupations, professor is the most frequent,

with 118,400 biographies, while rapper is the least frequent, with
1,406 biographies (see Figure 1). The longest biography is 194 to-

kens, while the shortest is eighteen; the median biography length

is seventy-two tokens. We note that the demographics of online

biographies’ subjects differ from those of the overall workforce, and

that our dataset does not contain all biographies on the Internet;

however, neither of these factors is likely to undermine our findings.
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Figure 1: Distribution of the number of biographies for the
twenty-eight different occupations, shown on a log scale.

Because some occupations have a high gender imbalance, our

validation and testing splits must be large enough that every gender

and occupation are sufficiently represented. We therefore used

stratified-by-occupation splits, with 65% of the biographies (258,370)

designated for training, 10% (39,635 biographies) designated for

validation, and 25% (99,335 biographies) designated for testing.

A complete implementation that reproduces the dataset can be

found in the source code available at http://aka.ms/biasbios.

1
https://www.bls.gov/soc/

2
WET is a special file format containing cleaned text extracted from webpages.

4 METHODOLOGY
We used our dataset to predict people’s occupations, taken from

the first sentence of their biographies as described in the previous

section, given the remainder of their biographies. For example, con-

sider the hypothetical biography Nancy Lee is a registered nurse. She
graduated from Lehigh University, with honours in 1998. Nancy has
years of experience in weight loss surgery, patient support, education,
and diabetes. The goal is to predict nurse from She graduated from
Lehigh University, with honours in 1998. Nancy has years of experi-
ence in weight loss surgery, patient support, education, and diabetes.

We used three different semantic representations of varying com-

plexity: bag-of-words (BOW), word embeddings (WE), and deep re-

current neural networks (DNN). When using the BOW andWE rep-

resentations, we used a one-versus-all logistic regression as the oc-

cupation classifier; to construct the DNN representation, we started

with word embeddings as input and then trained a DNN to predict

occupations in an end-to-end fashion. For each representation, we

considered two scenarios: (1) where explicit gender indicators—

e.g., first names and pronouns—are available to the classifier, (2)

where explicit gender indicators are “scrubbed.” For example, these

scenarios correspond to predicting the occupation nurse from the

text [She] graduated from Lehigh University, with honours in 1998.
[Nancy] has years of experience in weight loss surgery, patient support,
education, and diabetes, with and without the bracketed words.

4.1 Semantic Representations
Bag-of-words. The BOW representation encodes the ith biog-

raphy as a sparse vector xBOWi . Each element of this vector cor-

responds to a word type in the vocabulary, equal to 1 if the bi-

ography contains a token of this type and 0 otherwise. Despite

recent successes of using more complex semantic representations

for document classification, the BOW representation provides a

good baseline and is still widely used, especially in scenarios where

interpretability is important. To predict occupations, we trained a

one-versus-all logistic regression with L2 regularization using our

dataset’s training split represented using the BOW representation.

Word embeddings. The WE representation encodes the ith biog-

raphy as a vector xWE

i , obtained by averaging the fastText word

embeddings [9, 31] for the word types present in that biography.
3

The WE representation is surprisingly effective at capturing non-

trivial semantic information [1]. To predict occupations, we trained

a one-versus-all logistic regression with L2 regularization using our

dataset’s training split represented using the WE representation.

Deep recurrent neural networks. To construct the DNN represen-

tation, we started with the fastText word embeddings as input

and then trained a DNN to predict occupations in an end-to-end

fashion. We used an architecture similar to that of Yang et al. [41],

but with just one bi-directional recurrent neural network at the

level of words and with gated recurrent units (GRUs) [16] instead

of long short-term memory units; this model uses an attention

mechanism—an integral part of modern neural network architec-

tures [39]. Our choice of architecture was motivated by a desire to

use a relatively simple model that would be easy to interpret.

3
We note that the fastText word embeddings were trained using the Common Crawl,

albeit using a different subset than the one we used to create our dataset.
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Formally, given the ith biography represented as a sequence of

tokensw1

i , . . . ,w
T
i , we start by replacing each tokenwt

i with the

fastText word embedding for that word type to yield e1i , . . . , e
T
i .

The DNN then uses a GRU to process the biography in both forward

and reverse directions and concatenates the corresponding hidden

states from both directions to re-represent the t th token as follows:

−→
hti =

−−−→
GRU (eti ,h

t−1
i ) (1)

←−
hti =

←−−−
GRU (eti ,h

t+1
i ) (2)

hti = [
←−
hti ;
−→
hti ]. (3)

Next, the DNN projects each hidden state hti to the attention dimen-

sion ka via a fully connected layer with weightsWa and ba , and
transforms the result into an unnormalized scalaruti via a vectorwa :

ûti = tanh (Wa h
t
i + ba ) (4)

uti = w
⊺
a û

t
i . (5)

Each scalar is then normalized to yield an attention weight:

α ti =
exp (uti )∑T

t ′=1 exp (u
t ′
i )
. (6)

Finally, we obtain the DNN representation via a weighted sum:

xDNNi =

T∑
t=1

α ti h
t
i . (7)

The DNN makes predictions as follows:

ŷi = softmax(W0 x
DNN

i + b0), (8)

where ŷi is the predicted occupation for the ith biography.

We trained the DNN using our dataset’s training split and a

standard cross-entropy loss applied to the output of the last layer.

4.2 Explicit Gender Indicators
For each semantic representation, we considered two scenarios. In

the first scenario, the representation included all word types, mean-

ing that explicit gender indicators are available to the occupation

classifier. In the second scenario, we “scrubbed” explicit gender

indicators prior to creating the representation, meaning that these

indicators are not available to the occupation classifier. Specifically,

we deleted the subject’s first name, along with the words he, she, her,
his, him, hers, himself, herself, mr, mrs, and ms from each biography.

5 ANALYSIS AND RESULTS
In this section, we analyze the potential allocation harms that can

result from semantic representation bias. To do this, we study the

performance of the occupation classifier for each semantic repre-

sentation, with and without explicit gender indicators, as described

in the previous section. The classifiers’ overall accuracies are shown

in Figure 2. We start by analyzing gender bias for the scenario in

which the semantic representations include all word types, includ-

ing explicit gender indicators. We then analyze gender bias in the

scenario in which explicit gender indicators are “scrubbed,” and

use the DNN’s per-token attention weights to understand proxy

behavior that occurs in the absence of explicit gender indicators.

BOW WE DNN0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy

w
w/o

Figure 2: Occupation classifier accuracy for each semantic
representation, with and without explicit gender indicators.

5.1 With Explicit Gender Indicators
True positive rate gender gap. For each semantic representation,

we quantify gender bias by using our dataset’s testing split to calcu-

late the occupation classifier’s TPR gender gap—i.e., the difference

in TPRs between binary genders д and ∼д—for each occupation y:

TPRд,y = P [Ŷ = y |G = д,Y = y] (9)

Gapд,y = TPRд,y − TPR∼д,y , (10)

where Ŷ and Y are random variables representing the predicted and

target labels (i.e., occupations) for a biography and G is a random

variable representing the binary gender of the biography’s subject.

Defining the percentage of people with gender д in occupation

y as πд,y = P [G = д |Y = y], Figure 3 shows Gap
female,y versus

π
female,y for each occupationy for the BOW representation with ex-

plicit gender indicators; Figure 4 depicts the same information for all

three representations, with and without explicit gender indicators.

Compounding imbalance. We define the gender imbalance of oc-

cupation y as

πд,y
π∼д,y ; gender д is underrepresented if

πд,y
π∼д,y < 1 or,

equivalently, if πд,y < 0.5. The gender imbalance is compounded

if the underrepresented gender has a lower TPR than the overrep-

resented gender—e.g., if Gapд,y < 0 and д is underrepresented.

Theorem 1. If πд,y < 0.5 and Gapд,y < 0, then

P [G = д |Y = Ŷ = y] < πд,y . (11)

Proof. Via Bayes theorem,

P [G = д |Y = Ŷ = y] =
πд,y TPRд,y

P [Ŷ = y |Y = y]
. (12)

If πд,y < π∼д,y and TPRд,y < TPR∼д,y , then

P [G = д |Y = Ŷ = y]
P [G = ∼д |Y = Ŷ = y]

=
πд,y TPRд,y

π∼д,y TPR∼д,y
<

πд,y

π∼д,y
, (13)

so the gender imbalance for the true positives in occupation y is

larger than the initial gender imbalance in that occupation. □

As explained in Section 2, if the initial gender imbalance is due

to prior injustices, an occupation classifier will compound these

injustices, which may correspond to indirect discrimination [26].
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Figure 3:Gap
female,y versus π

female,y for each occupationy for
the BOW representation with explicit gender indicators.

It is clear from Figure 3 that there are few occupations with an

equal percentage of men and women—i.e., almost all occupations

have a gender imbalance—and that for that for occupations in which

women (conversely men) are underrepresented, Gap
female,y < 0

(conversely Gap
male,y < 0). In other words, there is a positive cor-

relation between the TPR gender gap for an occupation y and the

gender imbalance in that occupation. (Figure 4 illustrates that this

is also the case for the WE and DNN representations.) As a result, if

the occupation classifier for the BOW representation were used to

recruit candidates for jobs in occupation y, it would compound the

gender imbalance by a factor of

TPRд,y
TPR∼д,y

, where д is the underrepre-

sented gender. For example, 14.6% of the surgeons in our dataset’s

testing split are women—i.e., π
female,surgeon < 0.5. The classifier

for the BOW representation is able to correctly predict that 71% of

male surgeons and 54.5% of female surgeons are indeed surgeons—

i.e., Gap
female,surgeon < 0. Consequently, only 11.6% of the true

positives are women, so the gender imbalance is compounded.

Counterfactuals. To isolate the effects of explicit gender indica-

tors on the representations’ occupation classifiers, we examined

differences between the classifiers’ predictions on our dataset’s test-

ing split as described above and their predictions on our dataset’s

testing split with first names removed and other explicit gender

indicators (see Section 4.2) swapped for their complements, keep-

ing everything else the same. This analysis is similar in spirit to

the experiment of Bertrand and Mullainathan [6], in which they

responded to help-wanted ads using fictitious resumes in order to

measure the effect of gender and race on the likelihood of being

called for an interview. By analyzing the counterfactuals obtained

by swapping gender indicators, we can answer the question, “Which

occupation would this classifier predict if this biography had used

indicators corresponding to the other gender.” This question is inter-

esting because we would expect an occupation classifier to predict

the same occupation for a man and a woman with identical biogra-

phies. We note that this question is not the same as the question,

“Which occupation would this classifier predict if this biography’s

subject were the other gender.” Although the latter question is ar-

guably more interesting, it cannot be answered without additionally

changing all other factors that are correlated with gender [27].

For the BOW representation, we find that the classifier’s predic-

tions for 5.5% of the biographies in our testing split change when

their gender indicators are swapped; for the WE and DNN represen-

tations, these percentages are 12.2% and 4.6%, respectively. To better

understand the effects of explicit gender indicators on the classi-

fiers’ predictions, we consider pairs of occupations. Specifically, for

each gender д and pair of occupations (y1,y2), we identify the set

of biographies that are incorrectly predicted as having occupation

y1 with their original gender indicators, but correctly predicted as

having occupation y2 when their gender indicators are swapped:

Sд,(y1,y2) = {xRi : ŷi = y
1, ŷ
(д↔∼д)
i = y2,yi = y

2}, (14)

where xRi is the ith biography, yi is the target label (i.e., occupation)
for that biography, ŷi is the predicted label for that biography with

its original gender indicators, and ŷ
(д↔∼д)
i is the predicted label

for that biography when its gender indicators are swapped. For

example, S
female,(nurse,surgeon) is the set of biographies for female

surgeons who are incorrectly predicted as nurses, but correctly

predicted as surgeons when their biographies use male indicators.

We also identify the total set of biographies Sд,y2 that are only

correctly predicted as having occupation y2 when their gender

indicators are swapped, and then calculate the percentage of these

biographies for which the predicted label changes from y1 to y2:

Πд,(y1,y2) =
|Sд,(y1,y2) |
|Sд,y2 | × 100%. (15)

Tables 1 and 2 list, for the BOW representation, the five pairs of

occupations with the largest values of Πд,(y1,y2). For example, 7.1%

of male paralegals whose occupations are only correctly predicted

when their gender indicators are swapped are incorrectly predicted

as attorneys when their biographies use male indicators. Similarly,

14.7% of female rappers whose occupations are only correctly pre-

dicted when their gender indicators are swapped are incorrectly

predicted as models when their biographies use female indicators.

5.2 Without Explicit Gender Indicators
Remaining gender information. If there are no differences be-

tween the ways that men and women in occupation y represent

themselves in their biographies other than explicit gender indi-

cators, then “scrubbing” these indicators should be sufficient to

remove all information about gender from the biographies—i.e.,

P [X̃R = x̃R |G = д,Y = y] = P [X̃R = x̃R |G = ∼д,Y = y], (16)

where X̃R
is a random variable representing a biography without

explicit gender indicators, G is a random variable representing the

binary gender of the biography’s subject, andY is a random variable
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Figure 4: Gap
female,y versus π

female,y for each occupation y for all three semantic representations, with and without explicit
gender indicators. Correlation coefficients: BOW-w 0.85; BOW-wo 0.74; WE-w 0.86; WE-wo 0.71; DNN-w 0.82, DNN-wo 0.74.

Table 1: Pairs of occupations with the largest values of
Π
male,(y1,y2)—i.e., the percentage of men’s biographies that

are only correctly predicted as y2 when their indicators are
swapped for which the predicted label changes from y1.

y1 y2 Π
male,(y1,y2)

attorney paralegal 7.1%

architect interior designer 4.7%

professor dietitian 4.3%

photographer interior designer 3.5%

teacher yoga teacher 3.3%

Table 2: Pairs of occupations with the largest values of
Π
female,(y1,y2)—i.e., the percentage of women’s biographies

that are only correctly predicted as y2 when their indicators
are swapped for which the predicted label changes from y1.

y1 y2 Π
female,(y1,y2)

model rapper 14.7%

teacher pastor 8.5%

professor software engineer 6.5%

professor surgeon 4.8%

physician surgeon 3.8%

representing the biography’s target label (i.e., occupation). In turn,

this would mean that the TPRs for genders д and ∼д are identical:

TPRд,y = P [Ŷ = y |G = д,Y = y] (17)

= P [Ŷ = y |G = ∼д,Y = y] (18)

= TPR∼д,y , (19)

where Ŷ = f (X̃R ) is a random variable representing the predicted

label (i.e., occupation) for X̃R
. Moreover, it would also mean that

P [G = д | X̃R = x̃R ,Y = y] = P[G = ∼д | X̃R = x̃R ,Y = y], (20)

making it impossible to predict the gender of a “scrubbed” biogra-

phy’s subject belonging to occupation y better than random.

In order to determine whether “scrubbing” explicit gender in-

dicators is sufficient to remove all information about gender, we

used a balanced subsample of our dataset to predict people’s gender.

We created a subsampled training split by first discarding from our

dataset’s training split all occupations for which there were not at

least 1, 000 biographies for each gender. For each of the remaining

twenty-one occupations, we then subsampled 1, 000 biographies

for each gender to yield 42, 000 biographies, balanced by occupa-

tion and gender. To create a subsampled validation split, we first

identified the occupation and gender from those represented in the

subsampled training split with the smallest number of biographies

in our dataset’s validation split. Then, we subsampled that number

of biographies from our dataset’s validation split for each of the

twenty-one occupations represented in the subsampled training

split and each gender. We created a subsampled testing split sim-

ilarly. When using the BOW and WE representations, we used a

logistic regression with L2 regularization as the gender classifier;

to construct the DNN representation, we started with word embed-

dings as input and then trained a DNN to predict gender in an end-

to-end fashion, similar to the methodology described in Section 4.

Using the subsampled testing split, we find that the gender clas-

sifier for the BOW representation has an accuracy of 65.5%, while

the DNN representation has an accuracy of 68.2%. These accuracies

are higher than 50%, so “scrubbing” explicit gender indicators is

not sufficient to remove all information about gender. This find-

ing is reinforced by the scatterplot in Figure 5, which shows log

frequency versus correlation with G = female for each word type

in the vocabulary. It is clear from this scatterplot that deleting all

words that are correlated with gender would not be feasible.

True positive rate gender gap and compounding imbalance. For
each semantic representation, we again quantify gender bias by

using our (original) dataset’s testing split to calculate the occu-

pation classifier’s TPR gender gap for each occupation. Figure 4

shows Gap
female,y versus π

female,y for each occupation y for all

three representations, with and without explicit gender indicators.

125



Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting FAT* ’19, January 29–31, 2019, Atlanta, GA, USA

−0.05 0.00 0.05 0.10 0.15
Correlation coefficient

4

6

8

10

Lo
g(

Fr
eq

ue
nc

y)

an

actress

to

guy

systems

women

has

children

man

gender

yoga

and

mother

in

guitar

girl mom

female

than

for

actor

it

woman

with

father

football

at

the

husband

but

chairman

on

of

girls

Figure 5: Scatterplot of log frequency versus correlation
with G = female for each word type in the vocabulary.

“Scrubbing” explicit gender indicators reduces the TPR gender gaps,

while the classifiers’ accuracies (shown in Figure 2) remain roughly

the same; however, for some occupations, Gap
female,y is still very

large. Moreover, because there is still a positive correlation between

the TPR gender gap for an occupation y and the gender imbalance

in that occupation, “scrubbing” explicit gender indicators will not

prevent the classifiers from compounding gender imbalances.

We note that compounding imbalances are especially problem-

atic if people repeatedly encounter such classifiers—i.e., if an occupa-

tion classifier’s predictions determine the data used by subsequent

occupation classifiers. Who is offered a job today will affect the

gender (im)balance in that occupation in the future. If a classifier

compounds existing gender imbalances, then the underrepresented

gender will, over time, become even further underrepresented—a

phenomenon sometimes referred to as the “leaky pipeline.”

To illustrate this phenomenon, we performed simulations using

the DNN representation in which the candidate pool at time t + 1 is
defined by the true positives at time t . Defining the percentage of

people with genderд in occupationy at time t as π
(t )
д,y , we fit a linear

regression to the TPR gender gaps for different values of π
(t )
д,y :

Ĝap

(t )
д,y = π

(t )
д,y β1 + β0. (21)

Using this regression model, we are then able to calculate the per-

centage of people with gender д in occupation y at time t + 1:

π
(t+1)
д,y =

π
(t )
д,y TPR

(t )
д,y

π
(t )
∼д,y (TPR

(t )
д,y + Gap

(t )
д,y ) + π

(t )
д,y TPR

(t )
д,y

. (22)

Figure 6 shows π
(t )
д,y for t = 0, . . . , 10; each subplot corresponds

to a different initial gender imbalance. Over time, the gender imbal-

ances compound. We note that there are many different TPR pairs

TPR
(t )
д,y and TPR

(t )
∼д,y that can result in a given TPR gender gap

Gap
(t )
д,y . For example, a TPR gender gap of −0.2 might correspond

to 0.6 − 0.8 or to 0.7 − 0.9. Moreover, different TPR pairs will result

in different percentages of people with gender д in occupation y at

time t + 1. The bands in Figure 6 therefore reflect these differences.
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Figure 6: Simulations of compounding imbalances using the
DNN representation. Each subplot corresponds to a different
initial gender imbalance and shows π (t )д,y for t = 0, . . . , 10.

william henry gates iii ( born october 28 , 1955 ) is an american business magnate , investor
, author , philanthropist , humanitarian , and principal founder of microsoft corporation .
during his career at microsoft , gates held the positions of chairman , ceo and chief software
architect , while also being the largest individual shareholder until may 2014 . in 1975 ,
gates and paul allen launched microsoft , which became the world 's largest pc software
company . gates led the company as chief executive officer until stepping down in january
2000 , but he remained as chairman and created the position of chief software architect for
himself . in june 2006 , gates announced that he would be transitioning from full-time work
at microsoft to part-time work and full-time work at the bill & melinda gates foundation ,
which was established in 2000 .

Figure 7: Visualization of the DNN’s per-token attention
weights. Predicted label (i.e., occupation): software engineer.

Attention to gender. The DNN’s per-token attention weights al-

low us to understand proxy behavior that occurs in the absence of

explicit gender indicators. The attention weights indicate which

tokens are most predictive. For example, Figure 7 depicts the per-

token attention weights from the occupation classifier for the DNN

representation when predicting Bill Gates’ occupation from an ex-

cerpt of his biography on Wikipedia; the larger the weight, the

stronger the color. The attention weights for the words software
and architect are very large, and the DNN predicts software engineer.

In order to understand proxy behavior that occurs in the absence

of explicit gender indicators, we first used the subsampled testing

split, described above, to obtain per-token attention weights from

the gender classifier for the DNN representation.We then used these

weights to find “proxy candidates”—i.e., the words that are most pre-

dictive of gender in the absence of explicit gender indicators. Specif-

ically, we computed the sum of the per-token attention weights

for each word type, and then selected the types with the largest

sums as “proxy candidates.” Across multiple runs, we found that

the words women, husband, mother, woman, and female (ordered by
decreasing total attention) were consistently “proxy candidates.”

For each “proxy candidate,” we then used our dataset’s testing

split, with and without explicit gender indicators, to create his-

tograms of the per-token attention weights from the occupation

classifier for the DNN representation. These histograms represent

the extent to which that “proxy candidate” is predictive of occu-

pation, with and without gender indicators. By comparing the his-

tograms for each “proxy candidate,” we are able to identify words

that are used as proxies for gender in the absence of explicit gen-

der indicators: if there is a big difference between the histograms,

then the “proxy candidate” is likely a proxy. Figure 8 shows per-

occupation histograms for the word women, with (left) and without

(right) explicit gender indicators. It is clear that in the absence of

explicit gender indicators, the classifier has larger attention weights
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Figure 8: Per-occupation histograms of the per-token attention weights from the DNN representation’s occupation classifier
for the word women, with (left) and without (right) explicit gender indicators; occupations are ordered by TPR gender gap.

for the word women for all occupations. We see similar behavior

for the other “proxy candidates,” suggesting that the classifier uses

proxies for gender in the absence of explicit gender indicators.

The occupations in Figure 8 are ordered by TPR gender gap from

negative to positive. For occupations in the middle, where there are

small or no TPR gender gaps, the classifier still has non-zero atten-

tion weights for the word women. This means that using gender

information does not necessarily lead to a TPR gender gap. We also

note that it’s possible that the classifier is using gender information

to differentiate between occupations with very different gender im-

balances that are otherwise similar, such as physician and surgeon.

6 DISCUSSION AND FUTUREWORK
In this paper, we presented a large-scale study of gender bias in

occupation classification using a new dataset of hundreds of thou-

sands of online biographies. We showed that there are significant

TPR gender gaps when using three different semantic representa-

tions: bag-of-words, word embeddings, and deep recurrent neural

networks. We also showed that the correlation between these TPR

gender gaps and existing gender imbalances in occupations may

compound these imbalances. By performing simulations, we demon-

strated that compounding imbalances are especially problematic if

people repeatedly encounter occupation classifiers because the un-

derrepresented gender will become even further underrepresented.

Recently, Dwork and Ilvento [19] showed that fairness does not

hold under composition, meaning that if two classifiers are individ-

ually fair according to some fairness metric, then the sequential use

of these classifiers will not necessarily be fair according the same

metric. One interpretation of our finding regarding compounding

imbalances is that unfairness holds under composition. Understand-

ing why this is the case, especially given that fairness does not hold

under composition, is an interesting direction for future work.

We found that the TPR gender gaps are reduced by “scrubbing”

explicit gender indicators, while the classifiers’ overall accuracies

remain roughly the same. This constitutes an empirical example

where there is little tradeoff between promoting fairness—in this

case by “scrubbing” explicit gender indicators—and performance.

This also constitutes an empirical example where fairness is im-

proved by “scrubbing” sensitive attributes, contrary to other exam-

ples in the literature [29]. That said, in the absence of explicit gender

indicators, we did find that (1) we were able to predict the gender of

a biography’s subject better than random, evenwhen controlling for

occupation; (2) significant TPR gender gaps remain for some occupa-

tions; (3) there is still a positive correlation between the TPR gender

gap for an occupation and the gender imbalance in that occupation,

so existing gender imbalances may be compounded. These findings

indicate that there are differences between men’s and women’s

online biographies other than explicit gender indicators. These dif-

ferences may be due to the ways that men and women represent

themselves or due to men and women having different specializa-

tions within an occupation. Our findings highlight both the risks of

using machine learning in a high-stakes setting and the difficulty

of trying to promote fairness by “scrubbing” sensitive attributes.

Our future work will focus primarily on understanding how best

to mitigate TPR gender gaps and compounding imbalances in on-

line recruiting and automated hiring. Finally, although we focused

on gender bias, we note that other biases, such as those involving

race or socioeconomic status, may also be present in occupation

classification. Our methodology and analysis approach may prove

useful for quantifying such biases, provided relevant group mem-

bership information is available. Moreover, quantifying such biases

is an important direction for future work—it is likely that they exist

and, in the absence of evidence that they do not, online recruiting

and automated hiring run the risk of compounding prior injustices.
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